基于分数阶模型的牡蛎壳动力学特性研究

袁良柱 陆建华 苗春贺 王鹏飞 徐松林

袁良柱, 陆建华, 苗春贺, 王鹏飞, 徐松林. 基于分数阶模型的牡蛎壳动力学特性研究[J]. 爆炸与冲击, 2023, 43(1): 011101. doi: 10.11883/bzycj-2022-0318
引用本文: 袁良柱, 陆建华, 苗春贺, 王鹏飞, 徐松林. 基于分数阶模型的牡蛎壳动力学特性研究[J]. 爆炸与冲击, 2023, 43(1): 011101. doi: 10.11883/bzycj-2022-0318
YUAN Liangzhu, LU Jianhua, MIAO Chunhe, WANG Pengfei, XU Songlin. Dynamic properties of oyster shells based on a fractional-order model[J]. Explosion And Shock Waves, 2023, 43(1): 011101. doi: 10.11883/bzycj-2022-0318
Citation: YUAN Liangzhu, LU Jianhua, MIAO Chunhe, WANG Pengfei, XU Songlin. Dynamic properties of oyster shells based on a fractional-order model[J]. Explosion And Shock Waves, 2023, 43(1): 011101. doi: 10.11883/bzycj-2022-0318

基于分数阶模型的牡蛎壳动力学特性研究

doi: 10.11883/bzycj-2022-0318
基金项目: 国家自然科学基金(11672286, 11872361);中央高校基本科研业务费专项资金(WK2480000008);中石油与中科院重大战略合作项目(2015A-4812);高压物理与地震科技联合实验室室开放基金(2019HPPES01)
详细信息
    作者简介:

    袁良柱(1998- ),男,博士研究生,ylzustcedu@mail.ustc.edu.cn

    通讯作者:

    徐松林(1971- ),男,博士,研究员,博士生导师,slxu99@ustc.edu.cn

  • 中图分类号: O347

Dynamic properties of oyster shells based on a fractional-order model

  • 摘要: 贝壳、牡蛎等天然材料因其轻质高强的力学特性在材料设计等领域受到了广泛的关注,但由于材料本身结构的复杂性,对其力学行为的研究十分困难。近年来,分数阶模型在研究材料的力学特性上取得了成功,相比传统模型,分数阶模型可以更好地表征复杂介质的应力或应变与时间的关系。因此,本文从波传播理论出发,以分数阶模型作为材料本构,得到了复杂介质的波传播控制方程。通过Laplace变换得到了控制方程的解析解,并通过Laplace数值逆变换分析了波的衰减对分数阶模型中参量的敏感性,讨论了不同于材料弹性、黏性的材料“惯性”特性。接着,基于解析解和多种实验测试信号,给出了得到分数阶模型参数的拟合式子。以牡蛎材料作为研究对象,利用CO2脉冲激光器进行小试样的冲击加载、应用两点激光干涉测速系统(laser interferometer velocimetry system, VISAR)对表面粒子的速度进行测量,得到了4种密度下不同厚度的牡蛎壳试样的粒子速度时程曲线,再结合上述理论方法分析得到了牡蛎壳试样的Abel模型和分数阶Maxwell模型的参数,模型参数反映了牡蛎壳试样的细微观结构特征。结果发现:牡蛎壳试样的密度越大,即在细微观上具有砖泥结构的珍珠层的占比越高,速度衰减越大,试样的黏性越大;这是由于CO2激光脉冲器发射的激光波长与牡蛎壳试样珍珠层的砖泥结构间的缝隙尺寸相近,使得激光在冲击牡蛎壳试样中的珍珠层时发生较大的散射。
  • 图  1  牡蛎壳材料、圆形实验试样、试样纵剖面电镜照片与局部放大

    Figure  1.  Oyster shell material, circular sample, longitudinal section electron microscopy (SEM) and local magnification

    图  2  CO2脉冲加载与激光干涉测速系统(VISAR)

    Figure  2.  CO2 pulse loading and laser interferometer velocimetry system (VISAR)

    图  3  几种分数阶本构模型

    Figure  3.  Several fractional differential constitutive models

    图  4  单个半脉宽正弦函数

    Figure  4.  Single half pulse width sine function

    图  5  正弦波在Abel黏壶模型介质的衰减

    Figure  5.  Attenuation of a single half pulse width sine wave in Abel model media

    图  6  α分别为1.0和2.0时的波传播特性

    Figure  6.  The property of wave propagation when the order α is 1.0 and 2.0 , respectively

    图  7  参数αηE对幅值衰减的影响

    Figure  7.  Influence of parameters α, η and E on amplitude attenuation

    图  8  各个密度下不同厚度牡蛎试样的速度信号及拟合曲线

    Figure  8.  Velocity signals and fitting curves of oyster samples with different thicknesses and densities

    图  9  牡蛎试样分数阶模型的拟合曲线及参数与牡蛎试样密度的关系

    Figure  9.  The fitting curve of the fractional model of the oyster sample and relationship between parameters and oyster sample density

    表  1  牡蛎壳试样分数阶模型的拟合参数

    Table  1.   Fitting parameters of the fractional model of the oyster sample

    材料本构密度/(g·cm−3)αE/GPaη/(Pa·sα)
    Abel模型0.50.631-9.09×104
    0.70.811-5.65×103
    0.71.025-192.12
    1.21.181-17.84
    1.41.297-2.19
    分数阶Maxwell模型0.50.690 2.216.71×104
    0.70.851 7.343.55×103
    0.70.8977.671.45×103
    1.21.03312.88170.01
    1.41.22415.406.76
    下载: 导出CSV

    表  2  固定分数阶阶数情况下,牡蛎壳试样分数阶Maxwell模型的拟合参数

    Table  2.   Fitting parameters of fractional Maxwell model for oyster shell samples in the case of fixed fractional order

    材料本构密度/(g·cm−3)αE/GPaη/(Pa·sα)
    分数阶Maxwell模型0.50.942.441518.00
    0.77.67929.35
    0.77.82751.88
    1.213.15687.85
    1.416.46471.30
    下载: 导出CSV
  • [1] 杨挺青. 黏弹性力学 [M]. 武汉: 华中理工大学出版社, 1992: 1–28.
    [2] JI B H, GAO H J. Mechanical properties of nanostructure of biological materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52: 1963–1990. DOI: 10.1016/j.jmps.2004.03.006.
    [3] MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization [J]. Science, 2016, 354: 107–110. DOI: 10.1126/science.aaf8991.
    [4] GAO H L, CHEN S M, MAO L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nature Communications, 2017(8): 287. DOI: 10.1038/s41467-017-00392-z.
    [5] WU K J, SONG Z Q, ZHANG S S, et al. Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity [J]. Proceedings of the National Academy of Sciences, 2020, 117(27): 15465–15472. DOI: 10.1073/pnas.2000639117.
    [6] HUANG Z W, LI H Z, PAN Z L, et al. Uncovering high-strain rate protection mechanism in nacre [J]. Scientific Reports, 2011(1): 148. DOI: 10.1038/srep00148.
    [7] 徐松林, 刘永贵, 席道瑛等. 弹性波在含双裂纹岩体中的传播分析 [J]. 地球物理学报, 2012, 55(3): 944–952. DOI: 10.6038/j.issn.0001-5733.2012.03.024.

    XU S L, LIU Y G, XI D Y, et al. Analysis of propagation of elastic wave in rocks with double-crack model [J]. Chinese Journal of Geophysics, 2012, 55(3): 944–952. DOI: 10.6038/j.issn.0001-5733.2012.03.024.
    [8] 谭子翰, 徐松林, 刘永贵, 等. 含多种尺寸缺陷岩体中的弹性波散射 [J]. 应用数学和力学, 2013, 34(1): 38–48. DOI: 10.3879/j.issn.1000-0887.2013.01.005.

    TAN Z H, XU S L, LIU Y G, et al. Scattering of elastic waves by multi-size defects in rock mass [J]. Applied Mathematics and Mechanics, 2013, 34(1): 38–48. DOI: 10.3879/j.issn.1000-0887.2013.01.005.
    [9] WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading [J]. Materials Science and Engineering A, 2014, 620: 253–261. DOI: 10.1016/j.msea.2014.10.026.
    [10] MIAO C H, XU S L, SONG Y P, et al. Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting [J]. Powder Technology, 2022, 397: 117081. DOI: 10.1016/j.powtec.2021.117081.
    [11] HUANG J Y, HU S S, XU S L, et al. Fractal crushing of granular materials under confined compression at different strain rates [J]. International Journal of Impact Engineering, 2017, 106: 259–265. DOI: 10.1016/j.ijimpeng.2017.04.021.
    [12] TING T C T, MUKUNOKI I. A theory of viscoelastic analogy for wave propagation normal to the layering of a layered medium [J]. Journal of Applied Mechanics, 1979, 46(2): 329–336. DOI: 10.1115/1.3424550.
    [13] 张鸣, 王道荣, 单俊芳, 等. 石英纤维布叠层材料冲击性能研究 [J]. 实验力学, 2018, 33(2): 183–193. DOI: 10.7520/1001-4888-17-201.

    ZHANG M, WANG D R, SHAN J F, et al. Investigation on impact properties of quartz fiber cloth laminated material [J]. Journal of Experimental Mechanics, 2018, 33(2): 183–193. DOI: 10.7520/1001-4888-17-201.
    [14] 李毅, 苗春贺, 徐松林, 等. 梯度密度黏弹性材料的波传播研究 [J]. 爆炸与冲击, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.

    LI Y, MIAO C H, XU S L, et al. Wave propagation in density-graded viscoelastic material [J]. Explosion and Shock Waves, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.
    [15] 李毅. 梯度密度黏弹性材料的冲击响应研究 [D]. 合肥: 中国科学技术大学, 2020: 17–74. DOI: 10.27517/d.cnki.gzkju.2021.001407.

    LI Y. Investigation of dynamic response in density-graded viscoelastic material [D]. Hefei, Anhui, China: University of Science and Technology of China, 2021: 17–74. DOI: 10.27517/d.cnki.gzkju.2021.001407.
    [16] 陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模 [M]. 北京: 科学出版社, 2010: 12–56.
    [17] BAGLEY R L. Power law and fractional calculus model of viscoelasticity [J]. AIAA Journal, 1989, 27(10): 1412–1417. DOI: 10.2514/3.10279.
    [18] 雷经发, 许孟, 刘涛, 等. 聚氯乙烯弹性体静动态力学性能及本构模型 [J]. 爆炸与冲击, 2020, 40(10): 103103. DOI: 10.11883/bzycj-2019-0249.

    LEI J F, XU M, LIU T, et al. Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer [J]. Explosion and Shock Waves, 2020, 40(10): 103103. DOI: 10.11883/bzycj-2019-0249.
    [19] 段宇星, 杨强, 赵苗苗, 等. 弹性体材料应变率相关力学行为模型 [J]. 橡胶工业, 2020, 67(12): 899–903. DOI: 10.12136/j.issn.1000-890X.2020.12.0899.

    DUAN Y X, YANG Q, ZHAO M M, et al. Strain rate-related mechanical behavior model of elastomer material [J]. China Rubber Industry, 2020, 67(12): 899–903. DOI: 10.12136/j.issn.1000-890X.2020.12.0899.
    [20] WANG P F, YANG J L, SUN G Z, et al. Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates [J]. International Journal of Plasticity, 2018, 110: 74–94. DOI: 10.1016/j.ijplas.2018.06.007.
    [21] WANG P F, YANG J L, ZHANG X, et al. Dynamic behavior of carbon nanofiber-modified epoxy with the effect of polydopamine-coated interface [J]. Mechanics of Advanced Materials and Structures, 2018: 1827–1839. DOI: 10.1080/15376494.2018.1529843.
    [22] 薛晓. 碳纳米管纤维的动静态力学性能研究 [D]. 合肥: 中国科学技术大学, 2020: 53–61. DOI: 10.27517/d.cnki.gzkju.2020.000565.

    XUE X. Investigation of dynamic and quasi-static mechanical properties of carbon nanotube fibers [D]. Hefei, Anhui, China: University of Science and Technology of China, 2020: 53–61. 10.27517/d.cnki.gzkju.2020.000565.
    [23] XUE X, WANG P F, GONG M, et al. Time-dependent microstructural evolution mechanisms of twisted carbon nanotube fibers under tension and relaxation [J]. International Journal of Plasticity, 2021, 136: 102866. DOI: 10.1016/j.ijplas.2020.102866.
    [24] 赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型 [J]. 清华大学学报(自然科学版), 2013, 53(3): 378–383. DOI: 10.16511/j.cnki.qhdxxb.2013.03.004.

    ZHAO Y L, HOU Z C. Two viscoelastic constitutive models of rubber materials using fractional derivations [J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378–383. DOI: 10.16511/j.cnki.qhdxxb.2013.03.004.
    [25] BAGLEY R L, TORRVIK P J. A theoretical basis for the application of fractional calculus to viscoelasticity [J]. Journal of Rheology, 1983, 27(3): 201–210. DOI: 10.1122/1.549724CODEN:JORHD2.
    [26] 寇磊. 分数阶微分型双参数黏弹性地基矩形板受荷响应 [J]. 力学季刊, 2013, 34(1): 154–160. DOI: 10.3969/j.issn.0254-0053.2013.01.020.

    KOU L. Response of rectangular plate on fractional derivative two-parameter viscoelastic foundation [J]. Chinese Quarterly of Mechanics, 2013, 34(1): 154–160. DOI: 10.3969/j.issn.0254-0053.2013.01.020.
    [27] 尹耀得, 赵德敏, 刘建林, 等. 丙烯酸弹性体的率相关分数阶黏弹性模型研究 [J]. 力学学报, 2022, 54(1): 154–162. DOI: 10.6052/0459-1879-21-445.

    YIN Y D, ZHAO D M, LIU J L, et al. Study on the rate dependency of acrylic elastomer-based fractional viscoelastic model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 154–162. DOI: 10.6052/0459-1879-21-445.
    [28] ZHAO D M, YIN Y D, LIU J L. A fractional finite strain viscoelastic model of dielectric elastomer [J]. Applied Mathematical Modelling, 2021, 100: 564–579. DOI: 10.1016/j.apm.2021.08.023.
    [29] ROSSIKHIN Y A, SHITIKOVA M V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results [J]. Applied Mechanics Reviews, 2009, 63: 010801. DOI: 10.1115/1.4000563.
    [30] 冯卓意, 陈雪梅. 贝壳资源的深加工利用 [J]. 材料科学与工程学报, 2022, 40(1): 123–128. DOI: 10.14136/j.cnki.issn1673-2812.2022.01.020.

    FENG Z Y, CHEN X M. Research on the processing technology of seashell resource [J]. Journal of Materials Sciense and Engineering, 2022, 40(1): 123–128. DOI: 10.14136/j.cnki.issn1673-2812.2022.01.020.
    [31] 孙晋美, 郭万林. 贝壳珍珠母多级结构的化学-力学稳定性 [J]. 中国科学:物理学 力学 天文学, 2009, 39(11): 1654–1663.

    SUN J M, GUO W L. Chemical-mechanical stability of the hierarchical structure of shell nacre [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2009, 39(11): 1654–1663.
    [32] CONNOLLY J A. The numerical solution of fractional and distributed order differential equations [D]. Liverpool, UK: University of Liverpool, 2004: 13–48.
    [33] 张元林. 工程数学(积分变换) [M]. 4版. 北京: 高等教育出版社, 2010: 85–88.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  138
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-10-11
  • 网络出版日期:  2022-11-21
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回