FRP-混凝土-钢双壁空心管柱抗冲击性能研究与机理分析

赵艺佳 王蕊 赵晖 毛敏 沈玲华

赵艺佳, 王蕊, 赵晖, 毛敏, 沈玲华. FRP-混凝土-钢双壁空心管柱抗冲击性能研究与机理分析[J]. 爆炸与冲击, 2023, 43(10): 103101. doi: 10.11883/bzycj-2022-0335
引用本文: 赵艺佳, 王蕊, 赵晖, 毛敏, 沈玲华. FRP-混凝土-钢双壁空心管柱抗冲击性能研究与机理分析[J]. 爆炸与冲击, 2023, 43(10): 103101. doi: 10.11883/bzycj-2022-0335
ZHAO Yijia, WANG Rui, ZHAO Hui, MAO Min, SHEN Linghua. Impact resistances of FRP-concrete-steel double skin tubular columns and their mechanism analyses[J]. Explosion And Shock Waves, 2023, 43(10): 103101. doi: 10.11883/bzycj-2022-0335
Citation: ZHAO Yijia, WANG Rui, ZHAO Hui, MAO Min, SHEN Linghua. Impact resistances of FRP-concrete-steel double skin tubular columns and their mechanism analyses[J]. Explosion And Shock Waves, 2023, 43(10): 103101. doi: 10.11883/bzycj-2022-0335

FRP-混凝土-钢双壁空心管柱抗冲击性能研究与机理分析

doi: 10.11883/bzycj-2022-0335
基金项目: 国家自然科学基金(52108162);山西省自然科学基金(20210302123119);山西交通控股集团科技项目(20-JKKJ-28)
详细信息
    作者简介:

    赵艺佳(1998- ),女,硕士研究生,zhaoyijia_1@163.com

    通讯作者:

    赵 晖(1988- ),男,博士,副教授, zhaohui01@tyut.edu.cn

  • 中图分类号: O347

Impact resistances of FRP-concrete-steel double skin tubular columns and their mechanism analyses

  • 摘要: FRP-混凝土-钢双壁空心管柱(FRP-concrete-steel double skin tubular columns)目前已在桥梁墩柱中得到应用,抗冲击性能是其推广应用的重要指标。为此,基于前期试验,采用ABAQUS软件建立了考虑轴力与侧向冲击耦合影响的有限元模型。首先,分析了轴力-冲击联合作用下该类构件的抗冲击机理;其次,重点研究了FRP厚度和缠绕角度、轴压比、冲击速度、空心率、内钢管径厚比与材料强度对抗冲击性能的影响;最后,给出了轴力-冲击耦合作用下构件动力放大系数的计算公式。结果表明,混凝土的塑性变形是构件抗冲击的主要耗能机制;轴力对构件抗冲击性能有明显影响,当轴压比大于0.7时,轴力对抗冲击性能有削弱作用;内钢管径厚比对构件抗冲击性能影响较小;建议的计算公式可较好地预测该类构件的抗冲击承载力。
  • 图  1  FRP-DSTCs在侧向冲击下的变形模式

    Figure  1.  Deformation patterns of FRP-DSTCs under lateral impact loading

    图  2  有限元模型

    Figure  2.  Finite element model

    图  3  典型试件变形形态试验结果[12]与模拟结果的对比

    Figure  3.  Comparison of deformation patterns of typical specimens between test[12] and simulation

    图  4  典型试件冲击力时程曲线和跨中挠度时程曲线有限元计算结果与试验结果[12,22]的对比

    Figure  4.  Comparison of impact force- and mid-span deflection-time curves of typical specimens between simulation and test[12,22]

    图  5  有限元计算结果与试验结果的对比

    Figure  5.  Comparison of FE and test results

    图  6  冲击力平台值的确定方法

    Figure  6.  Determination of impact force platform value

    图  7  归一化全过程曲线(n=0.5)

    Figure  7.  Normalized time-history curves (n=0.5)

    图  8  FRP环向应力

    Figure  8.  Hoop stress of FRP

    图  9  核心混凝土裂缝方向

    Figure  9.  Crack direction of concrete

    图  10  内钢管等效塑性应变

    Figure  10.  Equivalent plastic strain of inner steel tube

    图  11  塑性耗能曲线

    Figure  11.  Plastic energy dissipation curves

    图  12  冲击力和跨中挠度时程曲线

    Figure  12.  Time history curves of impact force and mid-span deflection

    图  13  FRP厚度对冲击力平台值和跨中最大挠度的影响

    Figure  13.  Effects of FRP thickness on the mean impact force and the maximum mid-span deflection

    图  14  FRP缠绕角度对冲击力平台值和跨中最大挠度的影响

    Figure  14.  Effects of fiber winding angle on the mean impact force and the maximum mid-span deflection

    图  15  轴压比对冲击力平台值和跨中最大挠度的影响

    Figure  15.  Effect of axial-load ratio on the mean impact force and the maximum mid-span deflection

    图  16  冲击速度和空心率对冲击力平台值和跨中最大挠度的影响

    Figure  16.  Effect of impact velocity and hollow ratio on the mean impact force and the maximum mid-span deflection

    图  17  材料强度和内钢管径厚比对冲击力平台值和跨中最大挠度的影响

    Figure  17.  Effects of material strengths and diameter-to-thickness ratio of inner steel pipe on the mean impact force and the maximum mid-span deflection

    图  18  简化公式计算与有限元模拟得到的动力放大系数的比较

    Figure  18.  Comparison between the dynamic increase factors obtained from the simplified formula and FE model

    表  1  试件参数和冲击工况

    Table  1.   Specimen parameters and impact conditions

    试件 k h/m v/(m∙s−1) E0/kJ
    F1CS-L 1 0.25 2.2 0.56
    F1CS-M 1 0.50 3.1 1.13
    F1CS-H 1 1.00 4.2 2.25
    F2CS-L 2 0.25 2.2 0.56
    F2CS-M 2 0.50 3.1 1.13
    F2CS-H 2 1.00 4.2 2.25
    F3CS-L 3 0.25 2.2 0.56
    F3CS-M 3 0.50 3.1 1.13
    F3CS-H 3 1.00 4.2 2.25
    下载: 导出CSV

    表  2  构件参数

    Table  2.   Specimen parameters

    wf/mm θ/(°) di/wi χ v/(m∙s−1) fy/MPa fcu/MPa n
    0.17 0, 45, 90 44 0, 0.2, 0.4, 0.6 5 230 40 0~0.9
    0.17 0 44 0.2, 0.4, 0.6 5 230, 390 40, 60 0~0.9
    0.17 0 44 0, 0.2, 0.4, 0.6 5, 8, 10 230 40 0~0.9
    0, 0.17, 0.34, 0.51 0 44 0.4 5 230 40 0~0.9
    0.17 0 30, 44, 89 0.4, 0.6 5 230 40 0~0.9
    下载: 导出CSV
  • [1] YU T, WONG Y L, TENG J G, et al. Flexural behavior of hybrid FRP-concrete-steel double-skin tubular members [J]. Journal of Composites for Construction, 2006, 10(5): 443–452. DOI: 10.1061/(ASCE)1090-0268(2006)10:5(443).
    [2] BAILEY C G, YAQUB M. Seismic strengthening of shear critical post-heated circular concrete columns wrapped with FRP composite jackets [J]. Composite Structures, 2012, 94(3): 851–864. DOI: 10.1016/j.compstruct.2011.09.004.
    [3] 陈光明, 陆奕辰, 谢攀, 等. FRP-混凝土-钢双壁空心桥墩分析及设计方法研究 [J]. 中国公路学报, 2022, 35(2): 12–38. DOI: 10.19721/j.cnki.1001-7372.2022.02.002.

    CHEN G M, LU Y C, XIE P, et al. Analysis and design methods for FRP-concrete-steel double-skin tubular bridge piers [J]. China Journal of Highway and Transport, 2022, 35(2): 12–38. DOI: 10.19721/j.cnki.1001-7372.2022.02.002.
    [4] ABDELKARIM O I, ELGAWADY M A. Analytical and finite-element modeling of FRP-concrete-steel double-skin tubular columns [J]. Journal of Bridge Engineering, 2015, 20(8): B4014005. DOI: 10.1061/(ASCE)BE.1943-5592.0000700.
    [5] LI P D, ZHOU Y W, YANG T Q, et al. Axial compressive behavior of seawater sea-sand recycled aggregate concrete-filled double-skin non-corrosive tubular columns with square cross-section [J]. Thin-Walled Structures, 2021, 167: 108213. DOI: 10.1016/j.tws.2021.108213.
    [6] HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [7] 陈林. 桥墩防车辆撞击研究 [D]. 长沙: 湖南大学, 2015.

    CHEN L. Research on bridge piers subjected to vehicle collisions [D]. Changsha, Hunan, China: Hunan University, 2015.
    [8] DEMARTINO C, WU J G, XIAO Y. Experimental and numerical study on the behavior of circular RC columns under impact loading [J]. Procedia Engineering, 2017, 199: 2457–2462. DOI: 10.1016/j.proeng.2017.09.386.
    [9] LI R W, ZHOU D Y, WU H. Experimental and numerical study on impact resistance of RC bridge piers under lateral impact loading [J]. Engineering Failure Analysis, 2020, 109: 104319. DOI: 10.1016/j.engfailanal.2019.104319.
    [10] LIU B, FAN W, GUO W, et al. Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading [J]. Engineering Structures, 2017, 152: 619–642. DOI: 10.1016/j.engstruct.2017.09.009.
    [11] 杨晓强. 结构钢动态本构模型与方形高强CFST构件抗侧向冲击性能 [D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.001560.

    YANG X Q. Dynamic constitutive models of structural steels and transverse impact resistance of high-strength concrete filled steel tubes with square cross-section [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.001560.
    [12] WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: experimental study [J]. Thin-Walled Structures, 2015, 95: 363–373. DOI: 10.1016/j.tws.2015.06.022.
    [13] CHEN Z L, WANG J, CHEN J Y, et al. Responses of concrete-filled FRP tubular and concrete-filled FRP-steel double skin tubular columns under horizontal impact [J]. Thin-Walled Structures, 2020, 155: 106941. DOI: 10.1016/j.tws.2020.106941.
    [14] LIN G, TENG J G. Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading [J]. Journal of Composites for Construction, 2017, 21(4): 04017003. DOI: 10.1061/(ASCE)CC.1943-5614.0000772.
    [15] 纪孙航, 王文达, 鲜威. CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究 [J]. 工程力学, 2021, 38(8): 178–191. DOI: 10.6052/j.issn.1000-4750.2020.08.0586.

    JI S H, WANG W D, XIAN W. Lateral impact behavior of CFRP-reinforced circular concrete-filled steel tubular members after exposure to fire [J]. Engineering Mechanics, 2021, 38(8): 178–191. DOI: 10.6052/j.issn.1000-4750.2020.08.0586.
    [16] AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates [J]. Composite Structures, 2013, 96: 153–164. DOI: 10.1016/j.compstruct.2012.09.032.
    [17] BENTZ E C, FOSTER S J, FERNÁNDEZ RUIZ M, et al. Model code 2010- First complete draft, Chapters 7.3 and 7.13 [S]. Lausanne, Switzerland: Fédération Internationale du Béton, 2010.
    [18] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete [J]. Construction and Building Materials, 2003, 17(6/7): 471–489. DOI: 10.1016/S0950-0618(03)00045-X.
    [19] HAN L H, YAO G H, TAO Z. Performance of concrete-filled thin-walled steel tubes under pure torsion [J]. Thin-Walled Structures, 2007, 45(1): 24–36. DOI: 10.1016/j.tws.2007.01.008.
    [20] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: 10.1016/0734-743X(84)90005-8.
    [21] 韩林海. 钢管混凝土结构: 理论与实践 [M]. 2版. 北京: 科学出版社, 2007: 810–811.
    [22] YANG T, WANG W Q, LIU Z X, et al. Behavior of CFRP-UHPFRC-steel double skin tubular columns against low-velocity impact [J]. Composite Structures, 2021, 261: 113284. DOI: 10.1016/j.compstruct.2020.113284.
    [23] 中国土木工程学会. 中空夹层钢管混凝土结构技术规程: T/CCES 7—2020 [S]. 北京: 中国建筑工业出版社, 2020.

    China Civil Engineering Society. Technical specification for concrete-filled double skin steel tubular structures: T/CCES 7—2020 [S]. Beijing, China: China Architecture and Building Press, 2020.
    [24] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 纤维增强复合材料工程应用技术标准: GB 50608—2020 [S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608—2020 [S]. Beijing, China: China Planning Press, 2020.
    [25] HAN L H, TAO Z, LIAO F Y, et al. Tests on cyclic performance of FRP-concrete-steel double-skin tubular columns [J]. Thin-Walled Structures, 2010, 48(6): 430–439. DOI: 10.1016/j.tws.2010.01.007.
    [26] 王罡, 胡清, 刘昌永, 等. FRP缠绕方式对FRP约束钢管混凝土短柱轴压性能的影响研究 [J]. 建筑结构学报, 2021, 42(S2): 189–196. DOI: 10.14006/j.jzjgxb.2021.S2.0022.

    WANG G, HU Q, LIU C Y, et al. Axial compressive behavior of FRP confined concrete-filled steel tubular columns with different FRP-sheet winding patterns [J]. Journal of Building Structures, 2021, 42(S2): 189–196. DOI: 10.14006/j.jzjgxb.2021.S2.0022.
    [27] 刘明学, 钱稼茹. FRP-混凝土-钢双壁空心管的截面弯矩-曲率全曲线 [J]. 清华大学学报(自然科学版), 2007, 47(12): 2105–2110. DOI: 10.16511/j.cnki.qhdxxb.2007.12.020.

    LIU M X, QIAN J R. Moment-curvature relationships of FRP-concrete-steel double-skin tubular members [J]. Journal of Tsinghua University (Science and Technology), 2007, 47(12): 2105–2110. DOI: 10.16511/j.cnki.qhdxxb.2007.12.020.
    [28] GUO Q Q, ZHAO W Y. Displacement response analysis of steel-concrete composite panels subjected to impact loadings [J]. International Journal of Impact Engineering, 2019, 131: 272–281. DOI: 10.1016/j.ijimpeng.2019.05.022.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  78
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 修回日期:  2022-12-27
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回