一种模拟动边界绕流的锐利界面浸入边界法

郭涛 张晋铭 张纹惠 王文全

郭涛, 张晋铭, 张纹惠, 王文全. 一种模拟动边界绕流的锐利界面浸入边界法[J]. 爆炸与冲击, 2022, 42(8): 084201. doi: 10.11883/bzycj-2022-0342
引用本文: 郭涛, 张晋铭, 张纹惠, 王文全. 一种模拟动边界绕流的锐利界面浸入边界法[J]. 爆炸与冲击, 2022, 42(8): 084201. doi: 10.11883/bzycj-2022-0342
GUO Tao, ZHANG Jinming, ZHANG Wenhui, WANG Wenquan. A sharp-interface immersed boundary method for simulating flows around bluff body with moving boundary[J]. Explosion And Shock Waves, 2022, 42(8): 084201. doi: 10.11883/bzycj-2022-0342
Citation: GUO Tao, ZHANG Jinming, ZHANG Wenhui, WANG Wenquan. A sharp-interface immersed boundary method for simulating flows around bluff body with moving boundary[J]. Explosion And Shock Waves, 2022, 42(8): 084201. doi: 10.11883/bzycj-2022-0342

一种模拟动边界绕流的锐利界面浸入边界法

doi: 10.11883/bzycj-2022-0342
基金项目: 国家自然科学基金(51969009,52179087,52069010)
详细信息
    作者简介:

    郭 涛(1983- ),男,博士,副教授,guotaoj@126.com

    通讯作者:

    王文全(1977- ),男,博士,教授,wwqquan@126.com

  • 中图分类号: O351

A sharp-interface immersed boundary method for simulating flows around bluff body with moving boundary

  • 摘要: 为避免复杂贴体网格的更新和畸形对动边界流场计算效率、精度的影响,以充分掌握结构场的受力特性,采用一种改进的锐利界面(sharp-interface)浸入边界法模拟具有动边界绕流的流动问题。该方法将计算域中的固体视为流体,固体边界离散为若干个拉格朗日网格点,通过在界面单元处插值重构流动参数(速度),将其直接作为流动求解器的边界条件,由此来反映固体边界的影响。即通过构造“虚拟点—受力点—垂足点”的计算结构,借助双线性插值得到虚拟点的速度,再通过强制满足固体边界的无滑移条件计算出受力点的速度,以此为边界条件,最终求解基于浸入边界法的耦合系统方程,实现复杂动边界的流动数值模拟。采用C++编写该浸入边界法的数值程序,以单圆柱绕流为验证算例,通过与文献和实验结果的对比,验证了该方法的准确性和可靠性。在此基础上,对主动运动椭圆柱绕流问题进行了精细计算,探讨了不同轴长比(AR)、不同攻角($ \theta $)下的椭圆柱对尾涡结构分布特征和水力不稳定现象的影响。捕捉到了反对称S型、“P+S” Ⅰ型、“P+S” Ⅱ型尾涡脱落模态,漩涡强度、涡脱频率和升阻比随AR$ \theta $的变化规律,以及确定了升阻比临界攻角(25°)。
  • 图  1  固体边界处理

    Figure  1.  Treatment of the solid boundary

    图  2  整体计算域及边界条件

    Figure  2.  Computational domain and boundary conditions

    图  3  流向速度分布

    Figure  3.  Isolines of velocity

    图  4  一个周期内尾迹涡的演化

    Figure  4.  Isolines of vorticity against time

    图  5  升力、阻力系数时程曲线

    Figure  5.  Variations of the lift and drag coefficients with time

    图  6  椭圆柱绕流计算模型

    Figure  6.  Computational model of flow around an elliptical cylinder

    图  7  一个周期内椭圆柱的瞬时攻角变化曲线

    Figure  7.  Changes of the instantaneous angle of attack of the elliptical cylinder within a period

    图  8  平均阻力系数、最大升力系数随轴长比的变化

    Figure  8.  Variation of lift and drag coefficients with axis ratio

    图  9  涡脱频率随轴长比的变化

    Figure  9.  Variation of vortex shedding frequency with axis ratio

    图  10  不同轴长比下的流线图

    Figure  10.  The instantaneous streamlines with different axis ratio

    图  11  不同轴长比工况下的瞬时涡量

    Figure  11.  Variation of instantaneous vorticity with axis ratio

    图  12  不同攻角对升、阻力系数的影响

    Figure  12.  Variations of lift and drag coefficients with angle of attack

    图  13  不同攻角下的瞬时压力场

    Figure  13.  Instantaneous pressure fields at different angles of attack

    图  14  不同攻角对涡脱频率的影响

    Figure  14.  Variation of vortex shedding frequency with angle of attack

    图  15  不同攻角下的瞬时涡量图

    Figure  15.  Variation of the instantaneous vorticity with the angle of attack

    图  16  不同攻角下的涡脱落模态示意图

    Figure  16.  The diagram of vortex modes at different angles of attack

    表  1  本文结果与其他文献结果的对比($Re =300$

    Table  1.   The results comparison of average drag coefficients and Strouhal number at $Re=300 $

    算例平均阻力系数$ \overline {{c_{{\rm{D}}} }} $$ {S_{\rm{t}}} $
    文献[16]1.240.215
    文献[29]1.270.21
    文献[30]1.400.20
    本文1.360.208
    下载: 导出CSV
  • [1] 李仁年, 赵振希, 李德顺, 李银然, 陈霞, 于佳鑫. 风沙对风力机翼型绕流及其气动性能的影响 [J]. 农业工程学报, 2018, 34(14): 205–211; 303. DOI: 10.11975/j.issn.1002-6819.2018.14.026.

    LI R N, ZHAO Z X, LI D S, et al. Effect of wind sand on flow around airfoil wind turbine and its aerodynamic performance [J]. Transactions of Chinese Society of Agricultural Engineering, 2018, 34(14): 205–211; 303. DOI: 10.11975/j.issn.1002-6819.2018.14.026.
    [2] 贲安庆, 窦华书. 可压缩机翼绕流的数值模拟及其稳定性分析 [J]. 浙江理工大学学报, 2015, 33(9): 675–681.

    BEN A Q, DOU H S. Numerical simulation of compressible flow around the airfoil and its stability analysis [J]. Jounal of Zhejiang Sci-Tech University, 2015, 33(9): 675–681.
    [3] 刘雄, 梁湿. 风力机翼型在复合运动下的动态失速数值分析 [J]. 工程力学, 2016, 33(12): 248–256. DOI: CNKI:SUN:GCLX.0.2016-12-030.

    LIU X, LIANG S. Numerical investigation on dynamic stall of wind turbine airfoil undergoing complex motion [J]. Engineering Mechanics, 2016, 33(12): 248–256. DOI: CNKI:SUN:GCLX.0.2016-12-030.
    [4] KOIRALA R, NEOPANE H P, ZHU B S, et al. Effect of sediment erosion on flow around guide vanes of Francis turbine [J]. Renewable Energy, 2019, 136: 1022–1027. DOI: 10.1016/j.renene.2019.01.045.
    [5] LI W Z, WANG W Q, YAN Y, et al. Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil using immersed boundary method [J]. Ocean Engineering, 2018, 163(9): 94–106. DOI: 10.1016/j.oceaneng.2018.05.055.
    [6] 郝栋伟, 张立翔, 王文全. 流固耦合S-型自主游动柔性鱼运动特性分析 [J]. 工程力学, 2015, 32(5): 13–18.

    HAO D W, ZHANG L X, WANG W Q. Swimming patterns of an S-type self-propelled flexible fish in fluid-structure interaction [J]. Engineering Mechanics, 2015, 32(5): 13–18.
    [7] 向锦武, 孙毅, 申童, 李道春. 扑翼空气动力学研究进展与应用 [J]. 工程力学, 2019, 36(4): 8–23.

    XIANG J W, SUN Y, SHEN T, et al. Research progress and application of flapping wing aerodynamics [J]. Engineering Mechanics, 2019, 36(4): 8–23.
    [8] BOWERS A. Model tests showed aerodynamic instability of Tacoma narrows bridge [J]. Journal of Franklin Institute, 1941, 231(5): 470–470.
    [9] 颜大椿. 湍流、风工程和虎门大桥的风振 [J]. 力学与实践, 2020, 42(4): 523–525.

    YAN D C. Turbulence, wind engineering and wind vibration of Humen Bridge [J]. Mechanics in Engineering, 2020, 42(4): 523–525.
    [10] PESKIN C S. Flow patterns around heart valves: a numerical method [J]. Journal of Computational Physics, 1972, 10: 252–271. DOI: 10.1016/0021-9991(72)90065-4.
    [11] GOLDSTEIN D, HANDLER R, SIROVICH L. Modeling a no-slip flow boundary with an external force field [J]. Journal of Computational Physics, 1993, 105(2): 354–366. DOI: 10.1006/jcph.1993.1081.
    [12] JAMALUDIN M J. Combined immersed boundaries/ B-spline methods for simulations of flow in complex geometries [J]. Annual Research Briefs, Center for Turbulence Research, 1997, 161(1): 317–327.
    [13] FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. [J]. Journal of Computational Physics, 2000, 161(1): 35–60. DOI: 10.1006/jcph.2000.6484.
    [14] LE D V, KHOO B C, LIM K M. An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25): 2119–2130. DOI: 10.1016/j.cma.2007.08.008.
    [15] WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications [J]. Journal of Computational Physics, 2009, 228(6): 1963–1979. DOI: 10.1016/j.jcp.2008.11.019.
    [16] 王文全, 张国威, 闫妍. 模拟复杂流动的一种隐式直接力浸入边界方法 [J]. 工程力学, 2017, 34(2): 28–33; 93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600.

    WANG W Q, ZHANG G W, YAN Y. An implicit direct force immersed boundary method for simulating complex flow [J]. Engineering Mechanics, 2017, 34(2): 28–33; 93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600.
    [17] Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows [J]. Journal of Computational Physics, 2005, 209(2): 448–476. DOI: 10.1016/j.jcp.2005.03.017.
    [18] LAI M C, PESKIN C S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity [J]. Journal of Computational Physics, 2000, 160(2): 705–719. DOI: 10.1006/jcph.2000.6483.
    [19] 郭涛, 郝栋伟, 李明华, 等. 基于浸入边界法研究超弹性红细胞在剪切流中的运动特性 [J]. 医用生物力学, 2015, 30(3): 243–248. DOI: 10.3871/j.1004-7220.2015.03.243.

    GUO T, HAO D W, LI M H, et al. Motion characteristics on hyper-elastic red cells in shear flow based on immersed boundary meth [J]. Journal of Medical Biomechanics., 2015, 30(3): 243–248. DOI: 10.3871/j.1004-7220.2015.03.243.
    [20] SOTIROPOULOS F, YANG X. Immersed boundary methods for simulating fluid-structure interaction [J]. Progress in Aerospace Sciences, 2014, 65(5): 1–21. DOI: 10.1016/.j.paerosci.2013.09.003.DOI:.
    [21] MOHAMMADI M H, SOTIROPOULOS F, BRINKERHOFF J. Moving least squares reconstruction for sharp interface immersed boundary methods [J]. International Journal for Numerical Methods in Fluids, 2019, 90(20): 57–80. DOI: 10.1002/fld.4711.
    [22] 郭涛,张纹惠,王文全,等. 基于IBM法的低雷诺数下涡激振动高质量比效应的研究 [J]. 工程力学, 2022, 39(3): 222–232. DOI: 10.6052/j.issn.1000-4750.2021.07.0566.

    GUO T, ZHANG W H, WANG W Q, et al. Effects of high mass and damping ration on VIV of a circular cylinder with low Reynolds number based on IBM [J]. Engineering Mechanics, 2022, 39(3): 222–232. DOI: 10.6052/j.issn.1000-4750.2021.07.0566.
    [23] XIE F T, QU Y G, ISLAM M A, et al. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries [J]. Computers and Fluids, 2020, 202: 104498. DOI: 10.1016/j.compfluid.2020.104498.
    [24] YOUSEFZADEH M, BATTIATO I. High order ghost-cell immersed boundary method for generalized boundary conditions [J]. International Journal of Heat and Mass Transfer, 2019, 137(7): 585–598. DOI: 10.1016/j.ijheatmasstransfer.2019.03.061.
    [25] BRADY P T, LIVESCU D. Foundations for high-order, conservative cut-cell methods: stable discretizations on degenerate meshes [J]. Journal of Computational Physics, 2021, 426: 109794. DOI: 10.1016/j.jcp.2020.109794.
    [26] MONASSE L, DARU V, MARIOTTI C, et al. A conservative coupling algorithm between a compressible flow and a rigid body using an embedded boundary method [J]. Journal of Computational Physics, 2012, 231(7): 2977–2994. DOI: 10.1016/j.jcp.2012.01.002.
    [27] 张和涛, 宁建国, 许香照, 等. 一种强耦合预估-校正浸入边界法 [J]. 爆炸与冲击, 2021, 41(9): 094201. DOI: 10.11883/bzycj-2021-0129.

    ZHANG H T, NING J G, XU X Z, et al. A strong coupling prediction-correction immersed boundary method [J]. Explosion and Shock Waves, 2021, 41(9): 094201. DOI: 10.11883/bzycj-2021-0129.
    [28] 胡建伟, 汤怀民. 微分方程数值方法[M]. 2 版. 北京: 科学出版社, 2007: 79–105.
    [29] BALARAS E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations [J]. Computers & Fluids, 2004, 33(3): 375–404. DOI: 10.1016/S0045-7930(03)00058-6.
    [30] SCHLICHING H. Boundary-layer theory [M]. New York: Mcgraw-Hill Book Company, 1979: 19–21.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  326
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2022-08-25
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回