超高性能混凝土HJC本构模型参数确定及应用

宋帅 杜闯 李艳艳

宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用[J]. 爆炸与冲击, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343
引用本文: 宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用[J]. 爆炸与冲击, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343
SONG Shuai, DU Chuang, LI Yanyan. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion And Shock Waves, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343
Citation: SONG Shuai, DU Chuang, LI Yanyan. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion And Shock Waves, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343

超高性能混凝土HJC本构模型参数确定及应用

doi: 10.11883/bzycj-2022-0343
基金项目: 河北省高等学校科学研究项目(ZD2022140);河南省特种防护材料重点实验室基金(SZKFJJ202005)
详细信息
    作者简介:

    宋 帅(1994- ),硕士研究生,s3401920284@163.com

    通讯作者:

    杜 闯(1976- ),博士,讲师,duch_1@sina.com

  • 中图分类号: O382

Determination and application of the HJC constitutive model parameters for ultra-high performance concrete

  • 摘要: 在超高性能混凝土的数值模拟中,合理地确定其本构模型参数是提高计算精度和设计可靠度的基础。基于超高性能混凝土单轴压缩试验、霍普金森压杆试验和已有的三轴围压试验等,确定了超高性能混凝土的Holmquist-Johnson-Cook (HJC)本构模型参数。利用LS_DYNA软件模拟单向板爆炸试验,通过与试验中单向板的损伤程度和最大挠度进行对比,验证了已确定参数的有效性。为了进一步了解超高性能混凝土构件的抗爆机理,采用已确定的参数对单向板爆炸工况进行数值模拟,分析配筋和尺寸变化对爆炸结果的影响。结果表明,在爆炸过程中,提高纵筋配筋率可以减小单向板的跨中最大挠度,适当加密箍筋可以减小单向板侧面的斜裂缝长度。超高性能混凝土单向板具有明显的尺寸效应,其中厚度和长度变化对爆炸结果的影响最突出。
  • 图  1  静态失效强度与静水压力之间的关系

    Figure  1.  Relationship between static failure strength and hydrostatic pressure

    图  2  不同应变率下的等效应力与静水压力之间的关系

    Figure  2.  Relationship between the effective-stress and hydrostatic pressure under different strain rates

    图  3  UHPC单轴抗压强度与应变率之间的关系

    Figure  3.  Relationship between uniaxial compressive strength and strain rate of UHPC

    图  4  HJC本构模型状态方程

    Figure  4.  HJC constitutive model equation of states

    图  5  试验工况

    Figure  5.  Test layout

    图  6  有限元模型

    Figure  6.  Finite element model

    图  7  不同材料参数下的塑性损伤模拟效果对比

    Figure  7.  Comparison of simulation effects of plastic damage under different material parameters

    图  8  不同材料参数下跨中挠度的时程曲线

    Figure  8.  Time history curves of mid-span deflection under different material parameters

    图  9  1/2模型的钢筋塑性应变和等效应力分布

    Figure  9.  Distributions of plastic strain and equivalent stress of reinforcement in the 1/2 model

    图  10  不同箍筋间距下跨中最大挠度与配筋率的关系

    Figure  10.  Relationship between mid-span maximum deflection and reinforcement ratio under different stirrup spacings

    图  11  不同配筋率下斜裂缝长度与箍筋间距的关系

    Figure  11.  Relationship between oblique crack length and stirrup spacing under different reinforcement ratios

    图  12  单向板的尺寸效应

    Figure  12.  Dimension effects of the one-way slab

    表  1  不同应变率下的UHPC力学参数

    Table  1.   UHPC mechanical parameters under different strain rates

    应变率/s−1抗压强度/MPa$\overline \sigma $$\overline p $
    10−4105.01.000 00.333 3
    10−2113.31.079 00.359 7
    50134.61.281 90.427 3
    102164.71.568 60.522 9
    下载: 导出CSV

    表  2  超高性能混凝土HJC模型参数

    Table  2.   HJC model parametrs of UHPC

    ABNCT/MPaSfmaxεefminD1D2fs${\dot \varepsilon _0}$/s−1
    0.232 81.744 30.705 10.003 67.127.00.018 10.041.00.17251
    pc/MPapl/MPaμcμlK1/GPaK2/GPaK3/GPaσc/MPaG/GPaρ/(g·cm−3)
    35.0235.00.00110.038346.4−195.0416.6105.020.372.67
    下载: 导出CSV

    表  3  钢筋本构模型参数

    Table  3.   Parameters of reinforcement constitutive models

    材料密度/(g·cm−3)弹性模量/GPa泊松比屈服应力/MPa切线模量/GPa失效应变
    受拉钢筋7.852000.255241.610.10
    箍筋7.852000.254231.910.08
    下载: 导出CSV

    表  4  修正前的原始参数

    Table  4.   Original parameters before correction

    ABNCT/MPaSfmaxεefminD1D2fs${\dot \varepsilon _0}$/s−1
    0.761.60.610.0077.127.00.010.041.01
    pc/MPapl/MPaμcμlK1/GPaK2/GPaK3/GPaσc/MPaG/GPaρ/(g·cm−3)
    16.0800.00.0010.185.0−171.0208.0105.020.372.67
    下载: 导出CSV

    表  5  单向板各方向尺寸变化

    Table  5.   Dimension change of one-way plate in each direction

    长度/mm宽度/mm厚度/mm
    1 200400120
    1 500500180
    1 800600240
    下载: 导出CSV
  • [1] LI J, WU C Q, HAO H. An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads [J]. Materials and Design, 2015, 82: 64–76. DOI: 10.1016/j.matdes.2015.05.045.
    [2] WANG Y Z, WANG Y B, ZHAO Y Z, et al. Experimental study on ultra-high performance concrete under triaxial compression [J]. Construction and Building Materials, 2020, 263: 120225. DOI: 10.1016/j.conbuildmat.2020.120225.
    [3] LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
    [4] 杜忠, 胡福. 高延性混凝土(HDC)在抗爆间室中的防护效果评估 [J]. 工程建设与设计, 2019(22): 9–10. DOI: 10.13616/j.cnki.gcjsysj.2019.11.204.

    DU Z, HU F. Evaluation of the protective effect of high-ductility concrete (HDC) in anti-explosion chamber [J]. Construction and Design for Engineering, 2019(22): 9–10. DOI: 10.13616/j.cnki.gcjsysj.2019.11.204.
    [5] 辛健. 爆炸作用下RHT模型参数敏感性分析 [J]. 舰船电子工程, 2019, 39(4): 111–113, 122. DOI: 10.3969/j.issn.1672-9730.2019.04.024.

    XIN J. Sensitivity analysis of RHT model parameters under explosive attack [J]. Ship Electronic Engineering, 2019, 39(4): 111–113, 122. DOI: 10.3969/j.issn.1672-9730.2019.04.024.
    [6] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceeding of the 9th International Symposium, Interaction of the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315–322.
    [7] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [8] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C] // 14th International Symposium on Ballistics. Quebec: American Defense Preparedness Association, 1993: 591–600.
    [9] 杜闯, 宋帅, 张江鹏. 爆炸冲击作用下三种混凝土本构模型对比研究 [J]. 兵器装备工程学报, 2022, 43(11): 49–56. DOI: 10.11809/bqzbgcxb2022.11.007.

    DU C, SONG S, ZHANG J P. Comparative study on three concrete constitutive models under blast loading [J]. Journal of Ordnance Equipment Engineering, 2022, 43(11): 49–56. DOI: 10.11809/bqzbgcxb2022.11.007.
    [10] 张凤国, 李恩征. 混凝土撞击损伤模型参数的确定方法 [J]. 弹道学报, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.

    ZHANG F G, LI E Z. A method to determine the parameters of the model for concrete impact and damage [J]. Journal of Ballistics, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.
    [11] 韩莉, 吴萍. 动荷载作用下混凝土HJC本构模型 [J]. 绿色环保建材, 2018(11): 3–4. DOI: 10.16767/j.cnki.10-1213/tu.2018.11.002.
    [12] LIU Y, HUANG F L, MA A E. Numerical simulations of oblique penetration into reinforced concrete targets [J]. Computers and Mathematics with Applications, 2011, 61(8): 2168–2171. DOI: 10.1016/j.camwa.2010.09.006.
    [13] 张志刚, 李姝雅, 瘳红建. 爆炸荷载下碳纤维布加固混凝土板的抗弯性能研究 [J]. 应用力学学报, 2008, 25(1): 150–153.

    ZHANG Z G, LI S Y, LIAO H J. Flexural resistance of concrete plate strengthened with CFRP under explosive loading [J]. Chinese Journal of Applied Mechanics, 2008, 25(1): 150–153.
    [14] 张志华, 刘磊, 王亚, 等. 混凝土爆破试验及数值模拟 [J]. 矿冶, 2018, 27(6): 34–37. DOI: 10.3969/j.issn.1005-7854.2018.06.008.

    ZHANG Z H, LIU L, WANG Y, et al. Blasting experiment and numerical simulation of concrete [J]. Mining and Metallurgy, 2018, 27(6): 34–37. DOI: 10.3969/j.issn.1005-7854.2018.06.008.
    [15] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.

    REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.
    [16] 陈睿, 刘杰, 韩旭, 等. 混凝土材料动态本构参数的分阶段计算反求技术 [J]. 爆炸与冲击, 2014, 34(3): 315–321. DOI: 10.11883/1001-1455(2014)03-0315-07.

    CHEN R, LIU J, HAN X, et al. A multi-stage computational inverse technique for identification of the dynamic constitutive parameters of concrete [J]. Explosion and Shock Waves, 2014, 34(3): 315–321. DOI: 10.11883/1001-1455(2014)03-0315-07.
    [17] 张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证 [J]. 振动与冲击, 2019, 38(12): 25–31. DOI: 10.13465/j.cnki.jvs.2019.12.004.

    ZHANG S R, SONG R, WANG C, et al. Modification of a dynamic constitutive model—HJC model for roller-compacted concrete and numerical verification [J]. Journal of Vibration and Shock, 2019, 38(12): 25–31. DOI: 10.13465/j.cnki.jvs.2019.12.004.
    [18] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.

    XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127.
    [19] 李鹏. 钢管混凝土柱爆炸作用下试验及动态本构模型研究 [D]. 广州: 广州大学, 2016: 64–71.

    LI P. Test and dynamic constitutive model study of CFST column under blast load [D]. Guangzhou, Guangdong, China: Guangzhou University, 2016: 64–71.
    [20] 张若棋, 丁育青, 汤文辉, 等. 混凝土HJC、RHT本构模型的失效强度参数 [J]. 高压物理学报, 2011, 25(1): 15–22. DOI: 10.11858/gywlxb.2011.01.003.

    ZHANG R Q, DING Y Q, TANG W H, et al. The failure strength parameters of HJC and RHT concrete constitutive models [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15–22. DOI: 10.11858/gywlxb.2011.01.003.
    [21] DU Y X, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386.
    [22] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究 [J]. 土木工程学报, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.

    GUO Z H, WANG C Z. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.
    [23] 仵鹏涛. 三向应力状态下超高性能混凝土材料静态力学性能研究 [D]. 天津: 天津大学, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.

    WU P T. Study of static mechanical properties of ultra-high performance concrete under triaxial stress states [D]. Tianjin, China: Tianjin University, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.
    [24] 薛文. 落锤冲击作用下RC梁的动力响应研究 [D]. 武汉: 华中科技大学, 2016: 42–54.

    XUE W. Study on dynamic response of RC beams under drop hammer impact [D]. Wuhan, Hubei, China: Huazhong University of Science and Technology, 2016: 42–54.
    [25] 王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.

    WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
    [26] 陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究 [J]. 高压物理学报, 2012, 26(3): 313–318. DOI: 10.11858/gywlxb.2012.03.011.

    CHEN X M, LIU T, XIAO Z X. Numerical simulation study of parameter sensitivity analysis on concrete HJC model [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 313–318. DOI: 10.11858/gywlxb.2012.03.011.
    [27] 汪衡, 董静, 顾振中, 等. HJC模型参数对侵彻效应影响度的数值研究 [J]. 兵器装备工程学报, 2020, 41(3): 200–204. DOI: 10.11809/bqzbgcxb2020.03.040.

    WANG H, DONG J, GU Z Z, et al. Numerical study on the effect of HJC model parameters on penetration [J]. Journal of Ordnance Equipment Engineering, 2020, 41(3): 200–204. DOI: 10.11809/bqzbgcxb2020.03.040.
    [28] 胡志豪. 超高性能混凝土的气体渗透性能研究 [D]. 长沙: 湖南大学, 2021: 49–51. DOI: 10.27135/d.cnki.ghudu.2021.001461.

    HU Z H. Experimental study on gas permeability of ultra-high performance concrete [D]. Changsha, Hunan, China: Hunan University, 2021: 49–51. DOI: 10.27135/d.cnki.ghudu.2021.001461.
    [29] 王政. 弹靶侵彻动态响应的理论与数值分析 [D]. 上海: 复旦大学, 2005: 39–40.
    [30] BEISSEL S R, JOHNSON G R. An abrasion algorithm for projectile mass loss during penetration [J]. International Journal of Impact Engineering, 2000, 24(2): 103–116. DOI: 10.1016/S0734-743X(99)00146-3.
    [31] 严少华, 钱七虎, 周早生, 等. 高强混凝土及钢纤维高强混凝土高压状态方程的实验研究 [J]. 解放军理工大学学报, 2000, 1(6): 49–53. DOI: 10.7666/j.issn.1009-3443.20000610.

    YAN S H, QIAN Q H, ZHOU Z S, et al. Experimental study of equation of state for high-strength concrete and high-strength fiber concrete [J]. Journal of PLA University of Science and Technology, 2000, 1(6): 49–53. DOI: 10.7666/j.issn.1009-3443.20000610.
    [32] 孙玉祥, 王杰, 武海军, 等. 混凝土高压状态方程实验与数值模拟研究 [J]. 爆炸与冲击, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.

    SUN Y X, WANG J, WU H J, et al. Experiment and simulation on high-pressure equation of state for concrete [J]. Explosion and Shock Waves, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.
    [33] 高乐. 活性粉末混凝土高压状态方程研究 [D]. 广州: 广州大学, 2011: 51–53.

    GAO L. Research on high pressure equation of RPC [D]. Guangzhou, Guangdong, China: Guangzhou University, 2011: 51–53.
    [34] 唐鸽, 江少恩, 巫顺超, 等. 用Hugoniot数据计算高压状态方程 [J]. 强激光与粒子束, 2009, 21(11): 1737–1740.

    TANG G, JIANG S E, WU S C, et al. Deducing equation of state under high pressure from Hugoniot data [J]. High Power Laser and Particle Beams, 2009, 21(11): 1737–1740.
    [35] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究 [J]. 物理学报, 2012, 61(2): 026701. DOI: 10.7498/aps.61.026701.

    JIANG G P, JIAO C J, XIAO B Q. High-pressure state equation of high strength concrete investigated with the gas gun experiment [J]. Acta Physica Sinica, 2012, 61(2): 026701. DOI: 10.7498/aps.61.026701.
    [36] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究 [J]. 工程力学, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.

    SUN Q R, LI R Y, ZHAO Y Y, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete [J]. Engineering Mechanics, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.
    [37] 林琛, 徐建军, 杨晋伟, 等. 基于HJC模型的钢筋混凝土侵彻仿真失效准则与参数 [J]. 探测与控制学报, 2017, 39(2): 100–105.

    LIN C, XU J J, YANG J W, et al. The failure criterions and parameters of HJC model based perforation simulation [J]. Journal of Detection and Control, 2017, 39(2): 100–105.
    [38] 石少卿, 康建功, 汪敏, 等. ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用 [M]. 北京: 中国建筑工业出版社, 2011.
    [39] 汪维, 张舵, 卢芳云, 等. 方形钢筋混凝土板的近场抗爆性能 [J]. 爆炸与冲击, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08.

    WANG W, ZHANG D, LU F Y, et al. Anti-explosion performances of square reinforced concrete slabs under close-in explosions [J]. Explosion and Shock Waves, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08.
    [40] LIN X S. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect [J]. Construction and Building Materials, 2018, 176: 371–382. DOI: 10.1016/j.conbuildmat.2018.05.066.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  938
  • HTML全文浏览量:  223
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-11-10
  • 网络出版日期:  2022-11-18
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回