Design of concrete shield against the combination of penetration and explosion of warheads
-
摘要: 准确评估战斗部侵彻爆炸作用下混凝土遮弹层的损伤破坏可为防护工程设计提供重要参考。首先基于Karagozian & Case(K&C)模型框架建立了新型混凝土动态损伤本构模型,其中强度面综合考虑了静水压力、Lode角、应变率和损伤;独立描述了拉伸和压缩损伤,并考虑了拉压之间的连续过渡以及剪切变形和体积压缩对损伤的贡献。随后,开展了半无限厚混凝土靶体的105 mm口径弹体侵彻爆炸联合作用试验。进一步通过对上述试验和已有有限厚混凝土靶板的预制孔埋置装药爆炸试验进行数值仿真分析,验证了所建立的本构模型、参数取值和有限元分析方法在描述混凝土动态阻力、损伤演化和开裂行为方面的准确性。最后,确定了SDB、WDB-43/B和BLU-109/B三种典型战斗部以声速侵彻爆炸普通混凝土的临界贯穿和临界震塌厚度。结果表明:SDB、WDB-43/B和BLU-109/B战斗部侵彻爆炸作用下混凝土的临界贯穿厚度分别为1.4、3.4和3.8 m,临界震塌厚度分别为3.6、6.3和8.3 m;由于携带炸药量的差异,不同战斗部侵彻爆炸下的临界贯穿和临界震塌厚度与侵彻深度的比值非定值,相应的比值范围分别为1.49~2.13和2.90~4.66。Abstract: Accurately evaluating the damage and failure of concrete shield subjected to combination of penetration and explosion of warheads can provide an important reference for the design of protective structures. Firstly, based on the frame of Karagozian & Case (K&C) model, a newly dynamic-damage constitutive model was established. The hydrostatic pressure, Lode angle, strain rate, and damage were all considered in strength surface. The tension and compression damages were described separately with a continued transition. Besides, the contribution of shear deformation and hydrostatic compression were also considered. Then, the combined penetration and explosion test of 105-mm-caliber projectile on the semi-infinite concrete target was conducted. The corresponding numerical simulation was conducted to verify the accuracy of the constitutive model, the parameters, and the finite element analysis approach in describing the dynamic resistance of concrete. Furthermore, by conducting the numerical simulations of the existing prefabricated hole charge explosion test on the finite concrete plane, the accuracy of the established constitutive model, parameters, and finite element analysis approach in describing the damage evolution and cracking behavior of concrete was validated. Finally, the perforation limit and scabbing limit of normal strength concrete subjected to the combination of penetration and explosion of three typical warheads at sound velocity were determined. The results show that, the perforation limits of the SDB, WDU-43/B, and BLU-109/B warheads are 1.4, 3.4 and 3.8 m, respectively. The scabbing limit are 3.6, 6.3 and 8.3 m, respectively. Due to the differences of the explosive mass in warheads, the ratios of perforation limit and scabbing limit under combined penetration and explosion to the depth of penetration are not constant. The corresponding ratio ranges are 1.49−2.13 and 2.90−4.66, respectively.
-
表 1 动态损伤本构模型中的强度面和损伤参数
Table 1. Parameters of the strength surface and the damage for the dynamic-damage constitutive model
Smax p0 $ d_{\text{1}}^{\text{h}} $ $ d_{\text{1}}^{\text{s}} $ d2 εfrac A m 13fc −0.16fc 0.000 35 0.000 84 1 0.007 1.03 0 表 2 动态损伤本构模型的状态方程参数
Table 2. Parameters of the equation of state for the dynamic-damage constitutive model
μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10 0 0.0015 0.0043 0.0101 0.0305 0.0513 0.0726 0.0943 0.1740 0.2080 p1/μ2 p2/μ2 p3/μ2 p4/μ2 p5/μ2 p6/μ2 p7/μ2 p8/μ2 p9/μ2 p10/μ2 0 1 2.18 3.50 6.65 10.03 14.23 21.77 127.10 194.40 Ku,1 Ku,2 Ku,3 Ku,4 Ku,5 Ku,6 Ku,7 Ku,8 Ku,9 Ku,10 1 1 1.014 1.065 1.267 1.470 1.672 1.825 4.107 5.000 表 3 试验与数值模拟结果对比
Table 3. Comparisons of test data and simulation results
试验 深度 开坑直径 试验/mm 模拟/mm 相对误差/% 试验/mm 模拟/mm 相对误差/% 侵彻 515 519 0.8 1 176 948 −19.4 爆炸 680 648 −4.7 1 671 1 728 3.4 表 4 TNT炸药的模型和状态方程参数
Table 4. Parameters for material model and the equation of state of the explosive TNT
密度/(kg·m−3) 爆速/(m·s−1) CJ爆压/GPa AJWL/GPa BJWL/GPa R1 R2 ω 1630 6930 21 374 375 4.15 1.0 0.35 表 5 空气的模型和状态方程参数
Table 5. Parameters for material model and the equation of state of the air
ρ/(kg·m−3) C4 C5 E0/Pa 1.29 0.4 0.4 2.5×105 表 6 三种战斗部参数
Table 6. Parameters of three warheads
战斗部 直径/
mm总质量/
kg长度/
mm壁厚/
mm头部曲
径比等效TNT
质量/kgSDB 152 113 1800 10.8 3 23 WDU-43/B 234 454 2400 41.5 9 100 BLU-109/B 368 874 2510 25.4 3 324 表 7 三种战斗部打击下的模拟结果
Table 7. Simulation results of three warheads
战斗部 侵彻作用 侵彻爆炸联合作用 临界贯穿厚度/m D1 D2 临界震塌厚度/m D3 D4 深度/m 开坑直径/mm 深度/m 开坑直径/mm SDB 0.94 1066 1.03 1656 1.4 1.49 1.36 3.6 3.83 3.50 WDU-43/B 2.17 1806 2.45 2180 3.4 1.57 1.39 6.3 2.90 2.57 BLU-109/B 1.78 2554 2.18 3556 3.8 2.13 1.74 8.3 4.66 3.81 -
[1] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]// Proceedings of the 14th International Symposium on Ballistics, 1993. [2] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]// Proceedings of the 9th International Symposium on Interaction of the Effect of Munitions with Structures. Berlin-Strausberg, 1999. [3] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7. [4] KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014. [5] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010. [6] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016. [7] WEERHEIJM J, VAN DOORMAAL J C A M. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005. [8] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F. [9] 陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): Investigations on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10. [10] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743x(94)80024-4. [11] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6. [12] 孙传杰, 卢永刚, 张方举, 等. 新型头形弹体对混凝土的侵彻 [J]. 爆炸与冲击, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.SUN C J, LU Y G, ZHANG F J, et al. Penetration of cylindrical-nose-tip projectiles into concrete targets [J]. Explosion and Shock Waves, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07. [13] 黄蒙, 欧卓成, 段卓平, 等. 刚性弹体侵彻混凝土的相似性研究 [J]. 兵工学报, 2016, 37(S2): 176–180.HUANG M, OU Z C, DUAN Z P, et al. A study of similarity Analysis of hard projectile penetrating into concrete [J]. Acta Armamentarii, 2016, 37(S2): 176–180. [14] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001. [15] 马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275. [16] 左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2671. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2671. DOI: 10.3321/j.issn:1000-6915.2007.z1.027. [17] GENG H, LU H, SUN S Z, et al. Experimental study and damage effect analysis of concrete structures under the combined loadings of penetration and explosion [J]. Shock and Vibration, 2020, 2020: 2137945. DOI: 10.1155/2020/2137945. [18] SUN S Z, LU H, YUE S L, et al. The composite damage effects of explosion after penetration in plain concrete targets [J]. International Journal of Impact Engineering, 2021, 153: 103862. DOI: 10.1016/j.ijimpeng.2021.103862. [19] WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040. [20] 彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402. [21] 程月华, 姜鹏飞, 吴昊, 等. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析 [J]. 爆炸与冲击, 2022, 42(6): 063302. DOI: 10.11883/bzycj-2021-0373.CHENG Y H, JIANG P F, WU H, et al. On penetration depth of typical earth-penetrating projectiles into concrete targets considering the scaling effect [J]. Explosion and Shock Waves, 2022, 42(6): 063302. DOI: 10.11883/bzycj-2021-0373. [22] LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006. [23] FAN Y, CHEN L, YU R Q, et al. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges [J]. International Journal of Impact Engineering, 2022, 168: 104298. DOI: 10.1016/j.ijimpeng.2022.104298. [24] GERSTLE K B, ZIMMERMAN R M, WINKLER H, et al. Behavior of concrete under multiaxial stress states [J]. Journal of the Engineering Mechanics Division, 1980, 106(6): 1383–1403. DOI: 10.1061/JMCEA3.0002671. [25] KUPFER H B, GERSTLE K H. Behavior of concrete under biaxial stresses [J]. Journal of the Engineering Mechanics Division, 1969, 99(4): 853–866. DOI: 10.1061/JMCEA3.0001789. [26] WILLIAMS E M, AKERS S A, REED P A. Laboratory characterization of fine aggregate cementitious material: ERDC/GSL TR-05-16 [R]. Vicksburg, MS: Geotechnical and Structures Laboratory, US Army Engineer Research and Development Center, 2005. [27] RANKINE W J M. Manual of applied mechanics [M]. London: Griffin, 1876. [28] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005. [29] LS-DYNA. Keywords user’s manual. version 971 [M]. Livermore: Livermore Software Technology Corporation, 2012. [30] LIM J C, OZBAKKALOGLU T. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression [J]. Construction and Building Materials, 2014, 71: 492–509. DOI: 10.1016/j.conbuildmat.2014.08.050. [31] MURRAY Y D. User manual for LS-DYNA concrete material model 159 [M]. Washington DC: US Department of Transportation, 2007. FHWA-HRT-05-062. [32] SARGIN M. Stress-strain relationships for concrete and the analysis of structural concrete sections [M]. Waterloo: Solid Mechanics Division, University of Waterloo, 1971. [33] HORDIJK D A. Local approach to fatigue of concrete [D]. Delft: Delft University of Technology, 1991. [34] CUI J, HAO H, SHI Y C, et al. Experimental study of concrete damage under high hydrostatic pressure [J]. Cement and Concrete Research, 2017, 100: 140–152. DOI: 10.1016/j.cemconres.2017.06.005. [35] SIMO J C, HUGHES T J R. Computational inelasticity [M]. New York: Springer, 1998. DOI: 10.1007/b98904. [36] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003. [37] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815. [38] ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete [J]. Material Journal, 1996, 93(5): 432–442. DOI: 10.14359/9847. [39] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.WANG Y, KONG X, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.