Mo-ZrC梯度金属陶瓷的冲击响应行为

谢雨珊 陆建华 徐松林 舒在勤 张金咏

谢雨珊, 陆建华, 徐松林, 舒在勤, 张金咏. Mo-ZrC梯度金属陶瓷的冲击响应行为[J]. 爆炸与冲击, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374
引用本文: 谢雨珊, 陆建华, 徐松林, 舒在勤, 张金咏. Mo-ZrC梯度金属陶瓷的冲击响应行为[J]. 爆炸与冲击, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374
XIE Yushan, LU Jianhua, XU Songlin, SHU Zaiqin, ZHANG Jinyong. On impact properties of Mo-ZrC gradient metal ceramics[J]. Explosion And Shock Waves, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374
Citation: XIE Yushan, LU Jianhua, XU Songlin, SHU Zaiqin, ZHANG Jinyong. On impact properties of Mo-ZrC gradient metal ceramics[J]. Explosion And Shock Waves, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374

Mo-ZrC梯度金属陶瓷的冲击响应行为

doi: 10.11883/bzycj-2022-0374
基金项目: 国家自然科学基金(11672286,11602267,11872361);安徽省自然科学基金(1708085MA05);高压物理与地震科技联合实验室室开放基金(2019HPPES01)
详细信息
    作者简介:

    谢雨珊(1998- ),女,硕士,sa20005048@mail.ustc.edu.cn

    通讯作者:

    徐松林(1971- ),男,博士,研究员,博士生导师, slxu99@ustc.edu.cn

  • 中图分类号: O382

On impact properties of Mo-ZrC gradient metal ceramics

  • 摘要: 分层梯度材料特定的梯度变化能有效增强材料性能。为研究梯度结构、冲击方向对分层梯度材料冲击响应的影响,利用分离式霍普金森压杆结合高速摄影技术对Mo-ZrC分层梯度金属陶瓷进行了动态压缩实验,基于数字图像相关技术讨论了梯度结构、冲击方向对金属陶瓷材料破坏模式的影响,利用Mori-Tanaka理论计算得到金属陶瓷等效性质,结合应力波理论研究波在分层梯度复合材料中的传播规律。结果表明:(1) 相同加载条件下,梯度结构对材料的强度、韧性和破坏产物的完整性具有重要影响,在冲击过程中,样品响应可以分为压紧阶段、裂纹成核发展阶段和贯穿阶段,对于不同梯度结构和冲击方向,样品在加载过程中呈现出不同的破坏时序和失效模式;(2) 利用数字图像相关方法跟踪分层梯度陶瓷的局部变形发展,分析发现局部增量达到临界状态后,局部变形发展转化为微裂纹的形成和累积,最终导致整体性破碎失效;(3) 通过分层梯度材料一维应力波传播理论推导得到,改变冲击梯度方向对应力波透反射系数存在一定影响,不同梯度结构设计对改变冲击梯度方向敏感性不同,且存在极值情况。
  • 图  1  不同Mo-ZrC梯度金属陶瓷样品中Mo体积分数的空间分布及样品2 中不同位置的SEM形貌

    Figure  1.  Spatial distribution of Mo volume fraction in different Mo-ZrC gradient metal ceramics smaples and SEM morphologies at different positions in sample 2

    图  2  实验装置示意简图

    Figure  2.  Schematic diagram of experimental devices

    图  3  不同Mo-ZrC梯度金属陶瓷样品的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curves of different Mo-ZrC gradient metal ceramics smaples

    图  4  样品1冲击加载破碎过程

    Figure  4.  Crushing process of sample 1 under impact loading

    图  5  样品2冲击加载破碎过程

    Figure  5.  Crushing processes of sample 2 under impact loading

    图  6  样品3冲击加载破碎过程

    Figure  6.  Crushing processes of sample 3 under impact loading

    图  7  冲击过程中样品2的灰度标准差沿梯度方向的分布

    Figure  7.  Distribution of gray standard deviation of sample 2along the graded direction during impact

    图  8  样品2全场灰度标准差分布

    Figure  8.  Distribution of full-field gray standard deviation of sample 2 at different times

    图  9  不同时刻,样品1等效应变场

    Figure  9.  Equivalent shear strain fields of sample 1 at different times

    图  10  不同时刻,样品2的等效应变场

    Figure  10.  Equivalent shear strain fields of sample 2 at different times

    图  11  不同时刻,样品3的等效应变场

    Figure  11.  Equivalent shear strain field of sample 3 at different times

    图  12  一维应力波在不同结构中的传播[22]

    Figure  12.  One-dimensional stress wave propagation in different structures [22]

    图  13  透射系数的实验结果及理论分布情况

    Figure  13.  Variation of the transmission coefficientwith gradient direction based on experiment and theoretical calculation

    图  14  改变冲击方向归一化透射系数差值分布情况

    Figure  14.  Variation of the normalized transmission difference with gradient exponent

    图  15  不同入射角频率下透射系数的分布

    Figure  15.  Distribution of transmission coefficients at different incident angular frequencies

    图  16  不同入射角频率下归一化透射系数差值的分布

    Figure  16.  Distribution of normalized transmission differences at different incident angular frequencies

    图  17  不同模量下归一化透射系数差值的分布

    Figure  17.  Distribution of normalized transmission differences at different moduli

    表  1  Mo和ZrC材料力学能参数[16, 18]

    Table  1.   Mechanical properties of Mo and ZrC[16, 18]

    材料密实度密度/(kg·m−3)模量/GPa波速/(m·s−1)泊松比熔点/℃
    Mo0.951020027952300.32 3400
    ZrC0.98 651039077400.1912620
    下载: 导出CSV

    表  2  Mo-ZrC梯度金属陶瓷梯度结构

    Table  2.   Gradient structure of Mo-ZrC gradient metal ceramics

    层编号质量分数/%
    样品 1 样品 2 样品 3
    MoZrCMoZrCMoZrC
    1100 0100 0100 0
    2 80 20 90 10 65 35
    3 60 40 80 20 30 70
    4 40 60 70 30 20 80
    5 20 80 35 65 10 90
    6 0100 0100 0100
    下载: 导出CSV
  • [1] UDUPA G, RAO S S, GANGADHARAN K V. Functionally graded composite materials: an overview [J]. Procedia Materials Science, 2014, 5: 1291–1299. DOI: 10.1016/j.mspro.2014.07.442.
    [2] SALEH B, JIANG J H, FATHI R, et al. 30 years of functionally graded materials: an overview of manufacturing methods, Applications and Future Challenges [J]. Composites Part B: Engineering, 2020, 201: 108376. DOI: 10.1016/j.compositesb.2020.108376.
    [3] LARSON R A, PALAZOTTO A N, GARDENIER H E. Impact response of titanium and titanium boride monolithic and functionally graded composite plates [J]. AIAA Journal, 2009, 47(3): 676–691. DOI: 10.2514/1.38577.
    [4] QI Q, JI W, LI Q N, et al. Integrated preparation and enhanced performance of high-melting-point ZrC-Mo multilayer graded materials [J]. Ceramics International, 2022, 48(14): 20769–20777. DOI: 10.1016/j.ceramint.2022.04.057.
    [5] LI Y, RAMESH K T, CHIN E S C. Dynamic characterization of layered and graded structures under impulsive loading [J]. International Journal of Solids and structures, 2001, 38(34/35): 6045–6061. DOI: 10.1016/S0020-7683(00)00364-4.
    [6] WU T, HU Y, LENG Y L, et al. In situ observation of fracture in homogeneous and functionally graded 6061Al/SiCp composites [J]. Materials Science and Engineering: A, 2022, 830: 142279. DOI: 10.1016/j.msea.2021.142279.
    [7] JIA M Y, CHEN F, WU Y Q, et al. Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials [J]. Materials Science and Engineering: A, 2022, 834: 142591. DOI: 10.1016/j.msea.2021.142591.
    [8] KEDIR N, KIRK C D, GUO Z R, et al. Real-time visualization of impact damage in monolithic silicon carbide and fibrous silicon carbide ceramic composite [J]. International Journal of Impact Engineering, 2019, 129: 168–179. DOI: 10.1016/j.ijimpeng.2019.01.012.
    [9] ZHU B, CAI Y J. A strain rate-dependent enhanced continuum model for elastic-plastic impact response of metal-ceramic functionally graded composites [J]. International Journal of Impact Engineering, 2019, 133: 103340. DOI: 10.1016/j.ijimpeng.2019.103340.
    [10] MOVAHEDI N, FIEDLER T, TAŞDEMIRCI A, et al. Impact loading of functionally graded metal syntactic foams [J]. Materials Science and Engineering: A, 2022, 839: 142831. DOI: 10.1016/j.msea.2022.142831.
    [11] KOOHBOR B, KIDANE A. Design optimization of continuously and discretely graded foam materials for efficient energy absorption [J]. Materials and Design, 2016, 102: 151–161. DOI: 10.1016/j.matdes.2016.04.031.
    [12] XIAO D B, DONG Z C, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis [J]. Materials Science and Engineering: A, 2019, 758: 163–171. DOI: 10.1016/j.msea.2019.04.116.
    [13] KOOHBOR B, RAVINDRAN S, KIDANE A. In situ deformation characterization of density-graded foams in quasi-static and impact loading conditions [J]. International Journal of Impact Engineering, 2021, 150: 103820. DOI: 10.1016/j.ijimpeng.2021.103820.
    [14] CHEN X, CHANDRA N. The effect of heterogeneity on plane wave propagation through layered composites [J]. Composites Science and Technology, 2004, 64(10/11): 1477–1493. DOI: 10.1016/j.compscitech.2003.10.024.
    [15] BRUCK H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. International Journal of solids and Structures, 2000, 37(44): 6383–6395. DOI: 10.1016/S0020-7683(99)00236-X.
    [16] KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications [J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 718–742. DOI: 10.1016/j.jnucmat.2013.05.037.
    [17] LANDWEHR S E, HILMAS G E, FAHRENHOLTZ W G, et al. Microstructure and mechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing [J]. Materials Science and Engineering: A, 2008, 497(1/2): 79–86. DOI: 10.1016/j.msea.2008.07.017.
    [18] CHENG J Y, NEMAT-NASSER S, GUO W G. A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum [J]. Mechanics of Materials, 2001, 33(11): 603–616. DOI: 10.1016/S0167-6636(01)00076-X.
    [19] LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties [J]. Advanced Materials Technologies, 2020, 5(6): 1900981. DOI: 10.1002/admt.201900981.
    [20] HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
    [21] GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: 10.1016/0148-9062(80)91361-3.
    [22] 徐松林, 刘永贵, 席道瑛. 岩石物理与动力学原理 [M]. 北京: 科学出版社, 2019: 159–163.

    XU S L, LIU Y G, XI D Y. Rock physics and dynamics principle [M]. Beijing, China: Science Press, 2019: 159–163.
    [23] 李毅, 苗春贺, 徐松林, 等. 梯度密度黏弹性材料的波传播研究 [J]. 爆炸与冲击, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.

    LI Y, MIAO C H, XU S L, et al. Wave propagation in density-graded viscoelastic material [J]. Explosion and Shock Waves, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  133
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-11-03
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回