Blast mitigation performance of porous polyurethane-basedcomposite explosion-proof barrier
-
摘要: 针对削弱爆炸恐怖袭击危害这一公共安全领域的热点难题,开展新型削/防爆结构的研究刻不容缓。聚氨酯泡沫具有密度低、微观结构易设计、在爆炸载荷作用下不会产生二次杀伤性破片等优点,在新型削爆结构方面具有良好的应用前景。基于削弱爆炸危害的研究背景,搭建了定向冲击波流场装置对聚氨酯平板进行爆炸加载实验,并通过流固耦合数值模拟对实验进行了验证。在此基础上,利用已验证的模拟方法针对聚氨酯(polyurethane, PU)、水体环形复合屏障面向内爆炸载荷的削弱效应进行了模拟分析。以屏障的总体积相等作为设计前提,对比了PU/水、水、水/PU这3种屏障的冲击波削弱性能,并分析了聚氨酯密度对性能的影响规律。结果表明:削爆屏障的存在迫使冲击波发生反射、绕射、透射以及波与波之间的相互作用。相比于纯水屏障,PU/水屏障在自重下降32%的同时,依然能够有效削减冲击波峰值(可达13.3%),主要利用了内侧聚氨酯波的低阻抗来降低冲击波的反射强度。Abstract: In view of the hot problem of reducing the harm of explosive terrorist attacks in public security field, the research on explosion-proof structures is urgent. Polyurethane foam has the advantages of being lightweight, has excellent mechanical properties, and can avoid secondary debris damage. It has a good application prospect in the new explosive disposal equipment. Based on the research background of explosion hazard reduction, the mechanism and effectiveness of shock wave weakening of polyurethane foam and polyurethane-based composite barriers need to be investigated. The microstructure and mechanical properties of porous polyurethane were tested firstly. It was to obtain the basic parameters and contribute to construct the simulation model of the samples with different densities (100-300 kg/m3). A directional flow field device was set up to impact the polyurethane plate and the feasibility of the corresponding numerical model was analyzed to study its protective performance against the plane shock wave. On this basis, the weakening effect of the polyurethane-water annular composite barrier under internal explosive loading was analyzed numerically by using the verified numerical model. The design premise was that the total volume of barriers was equal, and the shockwave weakening performances of PU/water, pure water and water/PU barriers were compared. The influence of polyurethane density on shock wave weakening performance was analyzed. The results show that the existence of a barrier forces the shock wave to reflect, diffract, transmit and interact with each other. Compared with a pure water barrier, the PU/water barrier can effectively reduce shock wave peak (up to 13.3%) when the total mass decreases by 32%. This is mainly because of the lower impedance of the inner polyurethane foam, which can reduce the strength of the shock wave reflected back from the barrier wall. Under current simulation conditions, it is more effective for the protection of corresponding barrier when the density of PU is 200 kg/m3 in the PU/water barrier.
-
Key words:
- polyurethane foam /
- explosion-proof barrier /
- explosion impact /
- shock wave weakening
-
表 1 冲击波超压对有生力量的破坏作用阈值[19]
Table 1. Threshold value of destructive effect ofshockwave overpressure on effectives[19]
等级 超压峰值范围/MPa 破坏作用 Ⅰ < 0.02 没有杀伤作用 Ⅱ 0.02~0.03 轻伤(轻微的挫伤) Ⅲ 0.03~0.05 中等损伤(听觉器官损伤、
中等挫伤、骨折等)Ⅳ 0.05~0.10 重伤、甚至死亡(内脏严重挫伤) Ⅴ > 0.10 大部分死亡 表 2 泡沫材料参数
Table 2. Material parameters for PU foams
密度/(kg·m−3) 体积模量/MPa 剪切模量/MPa 最大拉伸应力/MPa 泊松比 100 5.53 8.30 0.69 0.12 200 11.27 16.90 2.77 0.13 300 37.35 56.02 3.64 0.18 表 3 实验与数值模拟的靶后压力峰值及对比
Table 3. Comparison between experimental and numerical simulation on peak pressure behind target
工况 靶后压力峰值/kPa 衰减率/% 实验 数值模拟 相对误差/% 实验 数值模拟 相对误差/% 0-0 524 560 6.9 0 0 0 100-40 172 191 11.1 67.2 65.9 1.9 200-60 123 126 2.4 76.5 77.5 1.0 300-20 126 129 2.4 75.9 76.9 1.3 300-60 109 113 3.7 79.2 79.8 0.8 表 4 数值模型中不同防护结构的几何参数
Table 4. Geometrical parameters of different protective structures in the numerical model
屏障名称 壁厚
A1/mm壁厚
A2/mm迎爆面内圆
半径R/mm屏障高度
H/mm水 0 100 90 310 PU/水 50 50 90 310 水/PU 50 50 90 310 -
[1] 毛益明, 方秦, 张亚栋, 等. 水体与混凝土防爆墙消波减爆作用对比研究 [J]. 兵工学报, 2009, 30(S2): 84–89.MAO Y M, FANG Q, ZHANG Y D, et al. Comparison investigation on mitigation effect of water and concrete explosion proof walls [J]. Acta Armamentarii, 2009, 30(S2): 84–89. [2] ZHU W H, XUE H L, ZHOU G Q, et al. Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge [J]. International Journal of Impact Engineering, 1997, 19(9): 831–845. DOI: 10.1016/S0734-743X(97)00022-5. [3] DOUGLAS K, ANDREW A, KATHERINE H, et al. A comparison of the blast & fragment mitigation performance of several structurally weak materials [C]// AIP Conference Proceedings 2007. Waikoloa: American Institute of Physics, 2007, 955(1): 951–954. DOI: 10.1063/1.2833286. [4] 宁建国, 王仲琦, 赵衡阳, 等. 爆炸冲击波绕流的数值模拟研究 [J]. 北京理工大学学报, 1999, 19(5): 543–547. DOI: 10.15918/j.tbit1001-0645.1999.05.003.NING J G, WANG Z Q, ZHAO H Y, et al. Study on the flow of the explosive shock wave around the wall numerical simulation [J]. Journal of Beijing Institute of Technology, 1999, 19(5): 543–547. DOI: 10.15918/j.tbit1001-0645.1999.05.003. [5] SHEN Y L, NING J G. Numberical simulation of the 2-d explosion field for the effect of protective wall’s shape [J]. Journal of Beijing Institute of Technology (English Edition), 2001(1): 39–44. [6] GELFAND B E, SILNIKOV M V, CHERNYSHOV M V. Modification of air blast loading transmission by foams and high density materials[C]// HANNEMANN K, SEILER F. In Proceeding of the 26th International Symposium on Shock Waves. Germany: Springer, 2007: 103–108. DOI: 10.1007/978-3-540-85168-4_15. [7] BAILEY J L, LINDSAY M S, SCHWER D A, et al. Blast mitigation using water mist: NRL/MR/6180-06-8933 [R]. Washington DC: Naval Research Laboratory, 2006. [8] BORNSTEIN H, PHILLIPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222–228. DOI: 10.1016/j.ijimpeng.2014.08.014. [9] ZHAO H Z, LAN K Y, CHONG O Y . Water mitigation effects on the detonations in confined chamber and tunnel system [J]. Shock and Vibration, 2001, 8(6): 349–355. DOI: 10.1155/2001/124019. [10] ZHU W, HUANG G Y, LIU C M, et al. Experimental and numerical investigation of a hollow cylindrical water barrier against internal blast loading [J]. Engineering Structures, 2018, 172: 789–806. DOI: 10.1016/j.engstruct.2018.06.062. [11] 蔡军锋, 傅孝忠, 易建政. 超高分子量聚乙烯-聚氨酯泡沫复合材料的抗爆实验与数值模拟 [J]. 高分子材料科学与工程, 2013, 29(11): 79–83. DOI: 10.16865/j.cnki.1000-7555.2013.11.019.CAI J F, FU X Z, YI J Z. Anti-explosion experiment and numerical simulation of UHMWPE-PUF composite [J]. Analysis of Polymers Polymer Materials Science and Engineering, 2013, 29(11): 79–83. DOI: 10.16865/j.cnki.1000-7555.2013.11.019. [12] 石少卿, 张湘冀, 刘颖芳, 等. 硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究 [J]. 振动与冲击, 2005, 24(5): 56–59. DOI: 10.13465/j.cnki.jvs.2005.05.017.SHI S Q, ZHANG X Y, LIU Y F, et al. Studies on the properties of anti-detonation and anti-penetration of rigid polyurethane foam [J]. Journal of Vibration and Shock, 2005, 24(5): 56–59. DOI: 10.13465/j.cnki.jvs.2005.05.017. [13] 王海福, 冯顺山. 爆炸载荷下聚氨酯泡沫材料中冲击波压力特性 [J]. 爆炸与冲击, 1999, 19(1): 78–83.WANG H F, FENG S S. Properties of shock pressure caused by explosion loads in polyurethane foam [J]. Explosion and Shock Waves, 1999, 19(1): 78–83. [14] 陈网桦, 彭金华, 葛桂兰, 等. 聚氨酯泡沫塑料抗冲击性能的实验研究 [J]. 弹道学报, 1997(4): 88–92.CHEN W H, PENG J H, GE G L, et al. The experimental investigation of the shock-resistant properties of polyurethane foam plastics [J]. Journal of Ballistics, 1997(4): 88–92. [15] 卢子兴, 袁应龙. 高应变率加载下复合泡沫塑料的吸能特性及失效机理研究 [J]. 复合材料学报, 2002, 19(5): 114–117. DOI: 10.13801/j.cnki.fhclxb.2002.05.022.LU Z X, YUAN Y L. Investigation into the energy absorption and failure characteristics of syntactic foams at high strain rates [J]. Acta Materiae Compositae Sinica, 2002, 19(5): 114–117. DOI: 10.13801/j.cnki.fhclxb.2002.05.022. [16] ZHOU T Y, ZHANG P, XIAO W, et al. Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading [J]. Composite Structures, 2019, 226: 111081. DOI: 10.1016/j.compstruct.2019.111081. [17] 曾祥, 刘彦, 许泽建, 等. 爆炸载荷作用下玻璃钢/硬质聚氨酯泡沫夹层结构抗冲击性能实验研究 [J]. 北京理工大学学报, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.ZENG X, LIU Y, XU Z J, et al. Experimental study on impact resistance of glass fiber reinforced plastic/rigid polyurethane foam sandwich structures under air blast loading [J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036. [18] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.ZHANG Y. Testing the antiknock energy absorption of polyurethane foam aluminum composite structure and numerical simulation [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182. [19] 李剑. 爆炸与防护 [M]. 第1版. 北京: 中国水利水电出版社, 2014: 258. [20] 闫伟杰. 水下爆炸数值模拟研究 [D]. 长沙: 国防科学技术大学, 2007: 17–21. [21] CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003. [22] 年鑫哲, 严东晋, 张耀, 等. 水体防爆墙和混凝土防爆墙对爆炸冲击波的消减效应 [J]. 振动与冲击, 2014, 33(18): 214–220. DOI: 10.13465/j.cnki.jvs.2014.18.035.NIAN X Z, YAN D J, ZHANG Y, et al. Mitigation effects of explosion-proof water walls and explosion-proof concrete walls on blast shock wave [J]. Journal of Vibration and Shock, 2014, 33(18): 214–220. DOI: 10.13465/j.cnki.jvs.2014.18.035. [23] CHENG Y, ZHOU T, WANG H, et al. Numerical investigation on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading [J]. Journal of Sandwich Structures and Materials, 2019, 21(3): 838–864. DOI: 10.1177/1099636217700350. [24] 王宇新, 顾元宪, 孙明, 等. 冲击载荷作用下多孔材料复合结构防爆理论计算 [J]. 兵工学报, 2006, 27(2): 375–379. DOI: 10.3321/j.issn:1000-1093.2006.02.042.WANG Y X, GU Y X, SUN M, et al. Blast-resistant calculation of compound structure with porous material under impact load [J]. Acta Armamentarii, 2006, 27(2): 375–379. DOI: 10.3321/j.issn:1000-1093.2006.02.042. [25] 宋博, 胡时胜, 王礼立. 分层材料的不同排列次序对透射冲击波强度的影响 [J]. 兵工学报, 2000, 21(3): 272–274. DOI: 10.3321/j.issn:1000-1093.2000.03.021.SONG B, HU S S, WANG L L. Influence on the transmitted intensity of shock wave through different tactic orders of layered materials [J]. Acta Armamentarii, 2000, 21(3): 272–274. DOI: 10.3321/j.issn:1000-1093.2000.03.021. [26] 刘秀, 刘国胜, 郝建薇, 等. 阻燃硬质聚氨酯泡沫燃烧热值对阻燃性能的影响 [J]. 北京理工大学学报, 2015, 35(2): 197–202. DOI: 10.15918/j.tbit1001-0645.2015.02.017.LIU X, LIU G S, HAO J W, et al. Effect of heat of combustion on flame retardancy of rigid polyurethane foams [J]. Journal of Beijing Institute of Technology, 2015, 35(2): 197–202. DOI: 10.15918/j.tbit1001-0645.2015.02.017. [27] RESNYANSKY A, DELANEY T. Experimental study of blast mitigation in a water mist: DSTO technical report: DSTO-TR-1944 [R]. Australia: Defence Science and Technology Organisation Weapons Systems Division, 2006. [28] 洪武, 徐迎, 金丰年. 水体防爆机理研究进展 [J]. 防护工程, 2011, 33(3): 73–78.HONG W, XU Y, JIN F N. Development of blast-resistant water walls [J]. Protective Engineering, 2011, 33(3): 73–78. [29] CHAPMAN T C, ROSE T A, SMITH P D. Blast wave simulation using AUTODYN 2D: a parametric study [J]. International Journal of Impact Engineering, 1995, 16(5): 777–787. DOI: 10.1016/0734-743X(95)00012-Y. [30] CHENG M, HUNG K C, CHONG O Y. Numerical study of water mitigation effects on blast wave [J]. Shock Waves, 2005, 14(3): 217–223. DOI: 10.1007/s00193-005-0267-4. [31] YANG Y F, HE J M. Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer [J]. Polym Composite, 2015, 36(9): 1584–1589. DOI: 10.1002/pc.23066. [32] JIN M, HAO Y F, HAO H. Numerical study of fence type blast walls for blast load mitigation [J]. International Journal of Impact Engineering, 2019, 131: 238–255. DOI: 10.1016/j.ijimpeng.2019.05.007.