大当量爆炸作用下预制节段拼装双层钢管混凝土墩柱的失效模式

夏梦涛 李明鸿 宗周红 甘露 黄杰 李卓

夏梦涛, 李明鸿, 宗周红, 甘露, 黄杰, 李卓. 大当量爆炸作用下预制节段拼装双层钢管混凝土墩柱的失效模式[J]. 爆炸与冲击, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385
引用本文: 夏梦涛, 李明鸿, 宗周红, 甘露, 黄杰, 李卓. 大当量爆炸作用下预制节段拼装双层钢管混凝土墩柱的失效模式[J]. 爆炸与冲击, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385
XIA Mengtao, LI Minghong, ZONG Zhouhong, GAN Lu, HUANG Jie, LI Zhuo. Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion[J]. Explosion And Shock Waves, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385
Citation: XIA Mengtao, LI Minghong, ZONG Zhouhong, GAN Lu, HUANG Jie, LI Zhuo. Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion[J]. Explosion And Shock Waves, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385

大当量爆炸作用下预制节段拼装双层钢管混凝土墩柱的失效模式

doi: 10.11883/bzycj-2022-0385
基金项目: 国家自然科学基金(51678141, 52208469);中国博士后科学基金(2020M681459, 2022T150119);江苏省自然科学基金(BK20220850)
详细信息
    作者简介:

    夏梦涛(1997- ),男,博士研究生,xiamengtao@seu.edu.cn

    通讯作者:

    宗周红(1966- ),男,博士,教授,博士生导师,zongzh@seu.edu.cn

  • 中图分类号: O383

Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion

  • 摘要: 为提升装配式公路桥梁的抗爆防护能力,提出将双层钢管混凝土柱应用于桥梁下部结构的预制节段拼装墩柱体系。对预制节段拼装双层钢管混凝土墩柱(precast segmental concrete-filled double-skin steel tube, PS-CFDST)进行了大当量野外爆炸试验,并基于LS-DYNA软件建立了精细化有限元模型,对 PS-CFDST柱在爆炸荷载作用下的动力响应和破坏过程进行了数值模拟。结果表明:大当量地面爆炸作用下, PS-CFDST柱的破坏模式表现为后张预应力筋断裂引起的墩柱整体失效,地面爆炸作用下墩柱在墩身底部接缝有较大的剪切滑移,核心混凝土的损伤主要出现在接缝处和预应力筋挤压处;预应力筋的建模方式对预制节段拼装墩柱的动力响应具有显著影响;增大轴向荷载可以减小预制节段拼装墩柱的侧向变形和墩底剪切滑移,有利于提高墩柱的抗爆性能。
  • 图  1  预制节段拼装双层钢管混凝土墩柱试件构造设计(单位:mm)

    Figure  1.  Structural design of PS-CFDST columns (unit in mm)

    图  2  野外爆炸试验布置

    Figure  2.  Field blast test setup

    图  3  自由场超压传感器的布置

    Figure  3.  Layout of free-field overpressure sensors

    图  4  爆炸试验结果

    Figure  4.  Blast test results

    图  5  有限元模型

    Figure  5.  Finite element model

    图  6  预应力和轴力平衡结果

    Figure  6.  Balance results for prestressing and axial force

    图  7  自由场超压时程试验和模拟结果的对比

    Figure  7.  Comparison of free-field overpressure time histories between test and simulation results

    图  8  预应力筋断裂

    Figure  8.  Fracture of prestressing tendons

    图  9  节段1底部混凝土损伤

    Figure  9.  Damage in concrete at the bottom of segment 1

    图  10  爆炸作用下预制节段拼装双层钢管混凝土柱破坏过程

    Figure  10.  Failure process of PS-CFDST columns under blast loading

    图  11  核心混凝土损伤发展(L表示墩柱侧视图,F表示迎爆面正视图)

    Figure  11.  Development of concrete core damage (L:lateral view, F: front view)

    图  12  预应力筋建模方式

    Figure  12.  Prestressing tendon modeling methods

    图  13  不同预应力筋建模方式下预应力筋模拟结果

    Figure  13.  Simulation results of prestressing tendons for different prestressing tendons modeling methods

    图  14  不同预应力筋建模方式下预应力筋模拟结果

    Figure  14.  Simulation results of concrete for different prestressing tendons modeling methods

    图  15  大当量地面爆炸载荷作用下墩柱的动态响应过程

    Figure  15.  Dynamic response process of pier column under large equivalent ground explosion load

    图  16  不同轴压比下预应力筋破坏情况的模拟结果

    Figure  16.  Simulated results of damage in prestressing tendons under different axial pressure ratios

    图  17  不同轴压比下不同位置处的位移时程曲线

    Figure  17.  Displacement-time histories at different positions under different axial pressure ratios

    图  18  整体柱和节段柱的峰值位移时程

    Figure  18.  Peak displacement-time histories of monolithic and segmental columns

    图  19  整体柱和节段柱模拟结果(L为墩柱侧视图,F为迎爆面正视图,B为背爆面正视图)

    Figure  19.  Simulation results of monolithic and segmental columns (L: lateral view, F: front view, B: back view)

    表  1  有限元模型材料参数

    Table  1.   Material parameters for the finite element model

    材料 材料参数 参数值 材料 材料参数 参数值
    混凝土 密度 2 500 kg/m3 钢管 密度 7 900 kg/m3
    弹性模量 34.5 GPa 弹性模量 206 GPa
    泊松比 0.2 切线模量 2.06 GPa
    无侧限抗压强度 37.3 MPa 泊松比 0.3
    预应力筋 密度 7 900 kg/m3 内钢管屈服强度 315 MPa
    弹性模量 200 GPa 外钢管屈服强度 416 MPa
    切线模量 0.33 MPa 应变率参数C 6844 s−1
    泊松比 0.3 应变率参数p 3.91
    屈服强度 1 860 MPa 弹性材料(钢筋混凝土) 密度 2600 kg/m3
    失效应变 0.04 弹性模量 34.5 GPa
    泊松比 0.2
    下载: 导出CSV
  • [1] 陈彦江, 丁梦佳, 许维炳, 等. 预制拼装桥墩体系及其抗震性能研究进展 [J]. 中国公路学报, 2022, 35(12): 56–76. DOI: 10.19721/j.cnki.1001-7372.2022.12.006.

    CHEN Y J, DING M J, XU W B, et al. Research process of the seismic performance for pre-fabricated concrete pier system [J]. China Journal of Highway and Transport, 2022, 35(12): 56–76. DOI: 10.19721/j.cnki.1001-7372.2022.12.006.
    [2] SHI Y C, HAO H, LI Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35: 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [3] LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006.
    [4] LI M H, ZONG Z H, HAO H, et al. Experimental and numerical study on the behaviour of CFDST columns subjected to close-in blast loading [J]. Engineering Structures, 2019, 185: 203–220. DOI: 10.1016/j.engstruct.2019.01.116.
    [5] LI M H, ZONG Z H, DU M L, et al. Experimental investigation on the residual axial capacity of close-in blast damaged CFDST columns [J]. Thin-Walled Structures, 2021, 165: 107976. DOI: 10.1016/j.tws.2021.107976.
    [6] LI J, HAO H, WU C Q. Numerical study of precast segmental column under blast loads [J]. Engineering Structures, 2017, 134: 125–137. DOI: 10.1016/j.engstruct.2016.12.028.
    [7] 杨旭, 张于晔, 张宁. 爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤分析 [J]. 爆炸与冲击, 2019, 39(3): 035104. DOI: 10.11883/bzycj-2017-0429.

    YANG X, ZHANG Y Y, ZHANG N. Dynamic response and damage analysis of precast segmental piers under blast impact [J]. Explosion and Shock Waves, 2019, 39(3): 035104. DOI: 10.11883/bzycj-2017-0429.
    [8] 张于晔, 杨旭, 冯君. 节段拼装桥墩在爆炸冲击作用下的破坏模式与损伤评估研究 [J]. 振动与冲击, 2020, 39(23): 225–233. DOI: 10.13465/j.cnki.jvs.2020.23.032.

    ZHANG Y Y, YANG X, FENG J. Failure mode and damage assessment of segmental assembled pier under blast impact [J]. Journal of Vibration and Shock, 2020, 39(23): 225–233. DOI: 10.13465/j.cnki.jvs.2020.23.032.
    [9] LIU L, ZONG Z H, MA J, et al. Experimental study on behavior and failure mode of PSRC bridge pier under close-in blast loading [J]. Journal of Bridge Engineering, 2021, 26(2): 04020124. DOI: 10.1061/(ASCE)BE.1943-5592.0001662.
    [10] LIU L, MA J, ZONG Z H, et al. Blast response and damage mechanism of prefabricated segmental RC bridge piers [J]. Journal of Bridge Engineering, 2021, 26(4): 04021012. DOI: 10.1061/(ASCE)BE.1943-5592.0001698.
    [11] PHAM T M, DO T V, HAO H. Roles of steel confinement in precast concrete segmental columns under impact and blast loads [C]//the 13th International Conference on Shock and Impact Loads on Structures. Guangzhou, Guangdong, China, 2019: 391–400.
    [12] DO T V, PHAM T M, HAO H. Stress wave propagation and structural response of precast concrete segmental columns under simulated blast loads [J]. International Journal of Impact Engineering, 2020, 143: 103595. DOI: 10.1016/j.ijimpeng.2020.103595.
    [13] ZHANG X Z, HAO H, LI M H, et al. The blast resistant performance of concrete-filled steel-tube segmental columns [J]. Journal of Constructional Steel Research, 2020, 168: 105997. DOI: 10.1016/j.jcsr.2020.105997.
    [14] DO T V, NGUYEN T P. Response of concrete-filled double skin tube segmental columns under blast loads [M]. Singapore: Springer Singapore, 2021: 207–218.
    [15] 中国土木工程学会. 中空夹层钢管混凝土结构技术规程: T/CCES 7-2020 [S]. 北京: 中国建筑工业出版社, 2020.

    China Civil Engineering Society. Technical specification for concrete-filled double skin steel tubular structures: T/CCES 7-2020 [S]. Beijing, China: China Architecture Industry Press, 2020.
    [16] HAO Y F, HAO H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings [J]. Engineering Structures, 2014, 73: 24–38. DOI: 10.1016/j.engstruct.2014.04.042.
    [17] RANDERS-PEHRSON G, BANNISTER K A. Airblast loading model for DYNA2D and DYNA3D: ARL-TR-1310 [R]. Aberdeen Proving Ground, MD, USA: USA Army Research Laboratory, 1997.
    [18] NGO T, MENDIS P, KRAUTHAMMER T. Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading [J]. Journal of Structural Engineering, 2007, 133(11): 1582–1590. DOI: 10.1061/(ASCE)0733-9445(2007)133:11(1582).
    [19] CHEN W S, HAO H, CHEN S Y. Numerical analysis of prestressed reinforced concrete beam subjected to blast loading [J]. Materials and Design, 2015, 65: 662–674. DOI: 10.1016/j.matdes.2014.09.033.
    [20] DO T V, PHAM T M, HAO H. Numerical investigation of the behavior of precast concrete segmental columns subjected to vehicle collision [J]. Engineering Structures, 2018, 156: 375–393. DOI: 10.1016/j.engstruct.2017.11.033.
    [21] DAWOOD H, ELGAWADY M, HEWES J. Factors affecting the seismic behavior of segmental precast bridge columns [J]. Frontiers of Structural and Civil Engineering, 2014, 8(4): 388–398. DOI: 10.1007/s11709-014-0264-8.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  41
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2023-09-28
  • 网络出版日期:  2023-10-07
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回