Analysis of gas-eroding barrel characteristics based on fluid-solid interaction
-
摘要: 火炮发射时,火药燃气与身管间发生剧烈的传热传质作用是导致身管烧蚀的重要因素。为了研究某155 mm火炮中高温高压高速的燃气流对身管的烧蚀特性,采用CFD流固耦合方法,建立了发射过程中的身管非稳态流动传热模型,并根据炮钢在不同温度下的烧蚀特点,将烧蚀过程分为热化学烧蚀和熔化烧蚀,建立了分段烧蚀模型。计算结果表明,身管内壁温度随时间的增加先迅速增大,随后逐渐降低。整体上,内壁温度随身管轴向距离的增大而逐渐降低。身管膛线起始区域的壁面温度最高,其烧蚀是熔化和热化学烧蚀共同导致的,而线膛部的大部分区域仅发生了热化学烧蚀。总烧蚀量随着身管轴向距离的增大而逐渐降低,膛线起始部的烧蚀最为严重,单发总烧蚀量(常温)为5.06 μm。同时分析了不同工况对身管烧蚀特性的影响,发现最大烧蚀量与初始壁面温度呈现很强的正相关性,温度的升高会加剧身管的烧蚀。Abstract: Gun barrel erosion is primarily caused by the intense heat and mass transfer between the propellant gas and the tube during firing. To investigate the erosion characteristics of a 155 mm barrel in a high-temperature, high-pressure, and high-velocity gas, an unsteady CFD fluid-solid interaction heat transfer model is developed with improved accuracy of temperature calculation. The eroding process is separated into two stages relevant to its temperature dependence. Thermochemical erosion occurs when the temperature is between the austenite phase-transition temperature and the melting point of cementite. When the temperature is above the melting point, melting becomes the dominant factor influencing erosion, so this is the melting erosion stage. Therefore, a piecewise model is developed. The numerical results of the calculation are as follows. The wall temperature rises rapidly and then falls gradually. In addition, the temperature decreases with the increase of axial distance in general. At the beginning of rifling, the wall temperature is the highest, and the erosion consists of melting and thermochemical erosion. In most of the rifling areas, only thermochemical erosion occurs. The amount of erosion is reduced continuously with the increase of axial distance. The most severe erosion happens near the beginning of rifling, where 5.06 μm (288 K) of erosion is found after one shot. The method is valid through the comparison with test results. Concurrently, the effect of different operating conditions on the erosion characteristics of the tube is investigated. The erosion distribution properties are found to be similar at different ambient temperatures and firing times. The erosion is the most severe near the beginning of rifling and decreases monotonically along the axis, although the peak value and range of erosion are different. Continuous firing and the increase of the external environment temperature will aggravate erosion. As a result, erosion has a strong positive correlation with initial wall temperature, and the temperature rise will accelerate the tube’s deterioration; therefore, rapid cooling of the barrel will effectively extend the service life of the artillery.
-
表 1 火炮结构和装填参数
Table 1. Artillery parameters
炮膛截面积/dm2 药室容积/L 炮弹行程长/m 火药密度/(kg·m−3) 装药量/kg 弹药质量/kg 1.886 23 6.9 1600 23 45 -
[1] 陈永才, 宋遒志, 王建中. 国内外火炮身管延寿技术研究进展 [J]. 兵工学报, 2006, 27(2): 330–334. DOI: 10.3321/j.issn:1000-1093.2006.02.031.CHEN Y C, SONG Q Z, WANG J Z. New technologies to extend the erosion life of gun barrel [J]. Acta Armamentarii, 2006, 27(2): 330–334. DOI: 10.3321/j.issn:1000-1093.2006.02.031. [2] STIEFEL L. 火炮发射技术 [M]. 杨葆新, 袁亚雄, 译. 南京: 兵器工业出版社, 1992: 249-251. [3] COTE P J, RICKARD C. Gas-metal reaction products in the erosion of chromiumplated gun bores [J]. Wear, 2000, 241(1): 17–25. DOI: 10.1016/s0043-1648(00)00313-6. [4] COTE P J, TODARO M E, KENDALL G, et al. Gun bore erosion mechanisms revisited with laser pulse heating [J]. Surface and Coatings Technology, 2003, 163/164: 478–483. DOI: 10.1016/S0257-8972(02)00645-X. [5] 高海霞, 黄进峰, 张济山, 等. 速射武器身管用钢的白层形成及剥落机制 [J]. 金属热处理, 2008, 33(10): 109–113. DOI: 10.13251/j.issn.0254-6051.2008.10.030.GAO H X, HUANG J F, ZHANG J S, et al. White layer formation and spalling mechanism of rapid-fire weapon tube steel [J]. Metal Heat Treatment, 2008, 33(10): 109–113. DOI: 10.13251/j.issn.0254-6051.2008.10.030. [6] 黄进峰, 连勇, 张津, 等. 不同表面处理条件下身管烧蚀研究 [J]. 北京科技大学学报, 2014, 36(3): 323–327. DOI: 10.13374/j.issn1001-053x.2014.03.007.HUANG J F, LIAN Y, ZHANG J, et al. Study on tube erosion under different surface treatment conditions [J]. Journal of University of Science and Technology Beijing, 2014, 36(3): 323–327. DOI: 10.13374/j.issn1001-053x.2014.03.007. [7] FAN W, GAO P. A review on erosion-reducing additive materials to extend the lifespan of gun barrels [J]. Journal of Materials Science, 2021, 56(36): 19767–19790. DOI: 10.1007/s10853-021-06558-x. [8] WEINACHT P, CONROY P. A numerical method for predicting thermal erosion in gun tubes: ARL-TR-1156 [R]. USA: ARL, 1996. [9] CONROY P J, WEINACHT P, NUSCA M J. 120-mm gun tube erosion including surface chemistry effects: ARL-TR-1526 [R]. USA: ARL, 1997. [10] LAWTON B. Thermo-chemical erosion in gun barrels [J]. Wear, 2001, 251(1): 827–838. DOI: 10.1016/S0043-1648(01)00738-4. [11] JARAMAZ S, MICKOVIĆ D M, ELEK P. Determination of gun propellants erosivity: experimental and theoretical studies [J]. Experimental Thermal and Fluid Science, 2010, 34(6): 760–765. DOI: 10.1016/j.expthermflusci.2010.01.005. [12] REZGUI N, MICKOVIĆ D M, ŽIVKOVIĆ S Ž, et al. Experimental and numerical analysis of thermo-chemical erosion in gun steel [J]. Thermal Science, 2019, 23(2): 599–612. DOI: 10.2298/TSCI180608194R. [13] SOPOK S, O'HARA P, PFLEGL G, et al. Unified computer model for predicting thermochemical erosion in gun barrels [J]. Journal of Propulsion and Power, 1999, 15(4): 601–612. DOI: 10.2514/2.5469. [14] SOPOK S, RICKARD C, DUNN S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: theories and mechanisms [J]. Wear, 2005, 258(1): 659–670. DOI: 10.1016/j.wear.2004.09.031. [15] SOPOK S, RICKARD C, DUNN S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part two: modeling and predictions [J]. Wear, 2005, 258(1): 671–683. DOI: 10.1016/j.wear.2004.09.030. [16] MISHRA A, HAMEED A, LAWTON B. Transient thermal analyses of midwall cooling and external cooling methods for a gun barrel [J]. Journal of Heat Transfer, 2010, 132(9): 105–112. DOI: 10.1115/1.4001607. [17] DEĞIRMENCI E, DIRIKOLUB M H. A thermochemical approach for the determination of convection heat transfer coefficients in a gun barrel [J]. Applied Thermal Engineering, 2012, 37: 275–279. DOI: 10.1016/j.applthermaleng.2011.11.029. [18] 吴斌, 夏伟. 基于导热反问题的身管传热计算 [J]. 兵工学报, 2005, 26(3): 299–302. DOI: 10.3321/j.issn:1000-1093.2005.03.003.WU B, XIA W. Heat transfer in gun barrel based on inverse heat conduction problems [J]. Acta Armamentarii, 2005, 26(3): 299–302. DOI: 10.3321/j.issn:1000-1093.2005.03.003. [19] CHEN T C, LIU C C, JANG H Y, et al. Inverse estimation of heat flux and temperature in multi-layer gun barrel [J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2060–2068. DOI: 10.1016/j.ijheatmasstransfer.2006.11.022. [20] LEE H L, YANG Y C, CHANG W J, et al. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance [J]. Applied Mathematics and Computation., 2009, 209(2): 211–221. DOI: 10.1016/j.amc.2008.12.038. [21] 金志明. 枪炮内弹道学 [M]. 北京: 北京理工大学出版社, 2004: 78-79. [22] 张振山, 吴永峰. 炮管内膛烧蚀磨损现象的分析 [J]. 装甲兵工程学院学报, 2003, 17(2): 70–73. DOI: 10.3969/j.issn.1672-1497.2003.02.019.ZHANG Z S, WU Y F. Analysis of ablative wear of gun bore [J]. Journal of Academy of Armored Force Engineering, 2003, 17(2): 70–73. DOI: 10.3969/j.issn.1672-1497.2003.02.019. [23] 邹利波, 于存贵, 冯广斌, 等. 弹丸连续挤进过程中身管坡膛受力和磨损分析 [J]. 北京理工大学学报, 2021, 41(5): 487–493. DOI: 10.15918/j.tbit1001-0645.2020.081.ZOU L B, YU C G, FENG G B, et al. Analysis of force and wear on slope bore of tube during projectile continuous extrusion [J]. Transactions of Beijing Institute of Technology, 2021, 41(5): 487–493. DOI: 10.15918/j.tbit1001-0645.2020.081. [24] 焦贵伟, 胡朝根. 火炮身管寿命评估预测 [J]. 兵器装备工程学报, 2018, 39(5): 66–69, 74. DOI: 10.11809/bqzbgcxb2018.05.014.JIAO G W, HU C G. Research of evaluation and prediction technology for gun barrel life [J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 66–69, 74. DOI: 10.11809/bqzbgcxb2018.05.014.