基于流固耦合的燃气冲刷烧蚀内膛特性分析

张雯浩 余永刚

张雯浩, 余永刚. 基于流固耦合的燃气冲刷烧蚀内膛特性分析[J]. 爆炸与冲击, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390
引用本文: 张雯浩, 余永刚. 基于流固耦合的燃气冲刷烧蚀内膛特性分析[J]. 爆炸与冲击, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390
ZHANG Wenhao, YU Yonggang. Analysis of gas-eroding barrel characteristics based on fluid-solid interaction[J]. Explosion And Shock Waves, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390
Citation: ZHANG Wenhao, YU Yonggang. Analysis of gas-eroding barrel characteristics based on fluid-solid interaction[J]. Explosion And Shock Waves, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390

基于流固耦合的燃气冲刷烧蚀内膛特性分析

doi: 10.11883/bzycj-2022-0390
详细信息
    作者简介:

    张雯浩(1996- ),男,博士研究生,x15950580060@outlook.com

    通讯作者:

    余永刚(1963- ),男,教授,博士生导师,yygnjust801@163.com

  • 中图分类号: O383; TJ012.1

Analysis of gas-eroding barrel characteristics based on fluid-solid interaction

  • 摘要: 火炮发射时,火药燃气与身管间发生剧烈的传热传质作用是导致身管烧蚀的重要因素。为了研究某155 mm火炮中高温高压高速的燃气流对身管的烧蚀特性,采用CFD流固耦合方法,建立了发射过程中的身管非稳态流动传热模型,并根据炮钢在不同温度下的烧蚀特点,将烧蚀过程分为热化学烧蚀和熔化烧蚀,建立了分段烧蚀模型。计算结果表明,身管内壁温度随时间的增加先迅速增大,随后逐渐降低。整体上,内壁温度随身管轴向距离的增大而逐渐降低。身管膛线起始区域的壁面温度最高,其烧蚀是熔化和热化学烧蚀共同导致的,而线膛部的大部分区域仅发生了热化学烧蚀。总烧蚀量随着身管轴向距离的增大而逐渐降低,膛线起始部的烧蚀最为严重,单发总烧蚀量(常温)为5.06 μm。同时分析了不同工况对身管烧蚀特性的影响,发现最大烧蚀量与初始壁面温度呈现很强的正相关性,温度的升高会加剧身管的烧蚀。
  • 图  1  烧蚀计算流程图

    Figure  1.  Flowchart of the erosion calculation

    图  2  计算域

    Figure  2.  The computational domains

    图  3  计算域网格

    Figure  3.  Computational domain grids

    图  4  不同时刻的壁面温度沿轴向分布曲线

    Figure  4.  Axial distribution of wall temperature at different times

    图  5  膛线起始部区域燃气轴向流速分布(t = 8 ms)

    Figure  5.  Axial velocity distribution of gas at the beginning of rifling (t = 8 ms)

    图  6  膛线起始部区域近壁湍动能分布(t = 8 ms)

    Figure  6.  Distribution of turbulent kinetic energy near the wall at the beginning of rifling (t = 8 ms)

    图  7  弹后燃气轴向流速分布(t = 9 ms)

    Figure  7.  Axial velocity distribution of gas after the bullet (t = 9 ms)

    图  8  弹后燃气近壁湍动能分布(t = 9 ms)

    Figure  8.  Distribution of turbulent kinetic energy near the wall after the bullet (t = 9 ms)

    图  9  距离膛表不同深度下的金属温度响应曲线

    Figure  9.  Metal temperature response at different depths from the surface

    图  10  不同时刻身管内壁温度随距离膛表深度的分布曲线

    Figure  10.  The temperature distribution with depths from the surface at different time

    图  11  身管不同区域的烧蚀

    Figure  11.  Erosion in different areas of the barrel

    图  12  烧蚀量沿轴向的分布

    Figure  12.  Axial erosion distribution

    图  13  不同射击次数下的烧蚀量

    Figure  13.  The erosion after different shots

    图  14  不同环境温度下的身管烧蚀分布

    Figure  14.  Distribution of erosion at different ambient temperatures

    图  15  不同环境温度下的膛线起始部的烧蚀量

    Figure  15.  Erosion at the beginning of rifling at different ambient temperatures

    图  16  连续发射下的身管烧蚀分布

    Figure  16.  Distribution of erosion under continuous firing

    图  17  连续发射下的膛线起始部的烧蚀量

    Figure  17.  Erosion at the beginning of rifling under continuous firing

    表  1  火炮结构和装填参数

    Table  1.   Artillery parameters

    炮膛截面积/dm2药室容积/L炮弹行程长/m火药密度/(kg·m−3)装药量/kg弹药质量/kg
    1.886236.91600 2345
    下载: 导出CSV
  • [1] 陈永才, 宋遒志, 王建中. 国内外火炮身管延寿技术研究进展 [J]. 兵工学报, 2006, 27(2): 330–334. DOI: 10.3321/j.issn:1000-1093.2006.02.031.

    CHEN Y C, SONG Q Z, WANG J Z. New technologies to extend the erosion life of gun barrel [J]. Acta Armamentarii, 2006, 27(2): 330–334. DOI: 10.3321/j.issn:1000-1093.2006.02.031.
    [2] STIEFEL L. 火炮发射技术 [M]. 杨葆新, 袁亚雄, 译. 南京: 兵器工业出版社, 1992: 249-251.
    [3] COTE P J, RICKARD C. Gas-metal reaction products in the erosion of chromiumplated gun bores [J]. Wear, 2000, 241(1): 17–25. DOI: 10.1016/s0043-1648(00)00313-6.
    [4] COTE P J, TODARO M E, KENDALL G, et al. Gun bore erosion mechanisms revisited with laser pulse heating [J]. Surface and Coatings Technology, 2003, 163/164: 478–483. DOI: 10.1016/S0257-8972(02)00645-X.
    [5] 高海霞, 黄进峰, 张济山, 等. 速射武器身管用钢的白层形成及剥落机制 [J]. 金属热处理, 2008, 33(10): 109–113. DOI: 10.13251/j.issn.0254-6051.2008.10.030.

    GAO H X, HUANG J F, ZHANG J S, et al. White layer formation and spalling mechanism of rapid-fire weapon tube steel [J]. Metal Heat Treatment, 2008, 33(10): 109–113. DOI: 10.13251/j.issn.0254-6051.2008.10.030.
    [6] 黄进峰, 连勇, 张津, 等. 不同表面处理条件下身管烧蚀研究 [J]. 北京科技大学学报, 2014, 36(3): 323–327. DOI: 10.13374/j.issn1001-053x.2014.03.007.

    HUANG J F, LIAN Y, ZHANG J, et al. Study on tube erosion under different surface treatment conditions [J]. Journal of University of Science and Technology Beijing, 2014, 36(3): 323–327. DOI: 10.13374/j.issn1001-053x.2014.03.007.
    [7] FAN W, GAO P. A review on erosion-reducing additive materials to extend the lifespan of gun barrels [J]. Journal of Materials Science, 2021, 56(36): 19767–19790. DOI: 10.1007/s10853-021-06558-x.
    [8] WEINACHT P, CONROY P. A numerical method for predicting thermal erosion in gun tubes: ARL-TR-1156 [R]. USA: ARL, 1996.
    [9] CONROY P J, WEINACHT P, NUSCA M J. 120-mm gun tube erosion including surface chemistry effects: ARL-TR-1526 [R]. USA: ARL, 1997.
    [10] LAWTON B. Thermo-chemical erosion in gun barrels [J]. Wear, 2001, 251(1): 827–838. DOI: 10.1016/S0043-1648(01)00738-4.
    [11] JARAMAZ S, MICKOVIĆ D M, ELEK P. Determination of gun propellants erosivity: experimental and theoretical studies [J]. Experimental Thermal and Fluid Science, 2010, 34(6): 760–765. DOI: 10.1016/j.expthermflusci.2010.01.005.
    [12] REZGUI N, MICKOVIĆ D M, ŽIVKOVIĆ S Ž, et al. Experimental and numerical analysis of thermo-chemical erosion in gun steel [J]. Thermal Science, 2019, 23(2): 599–612. DOI: 10.2298/TSCI180608194R.
    [13] SOPOK S, O'HARA P, PFLEGL G, et al. Unified computer model for predicting thermochemical erosion in gun barrels [J]. Journal of Propulsion and Power, 1999, 15(4): 601–612. DOI: 10.2514/2.5469.
    [14] SOPOK S, RICKARD C, DUNN S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: theories and mechanisms [J]. Wear, 2005, 258(1): 659–670. DOI: 10.1016/j.wear.2004.09.031.
    [15] SOPOK S, RICKARD C, DUNN S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part two: modeling and predictions [J]. Wear, 2005, 258(1): 671–683. DOI: 10.1016/j.wear.2004.09.030.
    [16] MISHRA A, HAMEED A, LAWTON B. Transient thermal analyses of midwall cooling and external cooling methods for a gun barrel [J]. Journal of Heat Transfer, 2010, 132(9): 105–112. DOI: 10.1115/1.4001607.
    [17] DEĞIRMENCI E, DIRIKOLUB M H. A thermochemical approach for the determination of convection heat transfer coefficients in a gun barrel [J]. Applied Thermal Engineering, 2012, 37: 275–279. DOI: 10.1016/j.applthermaleng.2011.11.029.
    [18] 吴斌, 夏伟. 基于导热反问题的身管传热计算 [J]. 兵工学报, 2005, 26(3): 299–302. DOI: 10.3321/j.issn:1000-1093.2005.03.003.

    WU B, XIA W. Heat transfer in gun barrel based on inverse heat conduction problems [J]. Acta Armamentarii, 2005, 26(3): 299–302. DOI: 10.3321/j.issn:1000-1093.2005.03.003.
    [19] CHEN T C, LIU C C, JANG H Y, et al. Inverse estimation of heat flux and temperature in multi-layer gun barrel [J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2060–2068. DOI: 10.1016/j.ijheatmasstransfer.2006.11.022.
    [20] LEE H L, YANG Y C, CHANG W J, et al. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance [J]. Applied Mathematics and Computation., 2009, 209(2): 211–221. DOI: 10.1016/j.amc.2008.12.038.
    [21] 金志明. 枪炮内弹道学 [M]. 北京: 北京理工大学出版社, 2004: 78-79.
    [22] 张振山, 吴永峰. 炮管内膛烧蚀磨损现象的分析 [J]. 装甲兵工程学院学报, 2003, 17(2): 70–73. DOI: 10.3969/j.issn.1672-1497.2003.02.019.

    ZHANG Z S, WU Y F. Analysis of ablative wear of gun bore [J]. Journal of Academy of Armored Force Engineering, 2003, 17(2): 70–73. DOI: 10.3969/j.issn.1672-1497.2003.02.019.
    [23] 邹利波, 于存贵, 冯广斌, 等. 弹丸连续挤进过程中身管坡膛受力和磨损分析 [J]. 北京理工大学学报, 2021, 41(5): 487–493. DOI: 10.15918/j.tbit1001-0645.2020.081.

    ZOU L B, YU C G, FENG G B, et al. Analysis of force and wear on slope bore of tube during projectile continuous extrusion [J]. Transactions of Beijing Institute of Technology, 2021, 41(5): 487–493. DOI: 10.15918/j.tbit1001-0645.2020.081.
    [24] 焦贵伟, 胡朝根. 火炮身管寿命评估预测 [J]. 兵器装备工程学报, 2018, 39(5): 66–69, 74. DOI: 10.11809/bqzbgcxb2018.05.014.

    JIAO G W, HU C G. Research of evaluation and prediction technology for gun barrel life [J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 66–69, 74. DOI: 10.11809/bqzbgcxb2018.05.014.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  84
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2023-02-20
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回