Action time sequence of underwater explosion shock waves and shaped charge projectiles
-
摘要: 聚能装药水下爆炸过程中会产生高速聚能侵彻体和强间断冲击波等多种毁伤元。由于聚能侵彻体和冲击波的作用时间接近,且聚能装药水下爆炸作用时序的理论并不完善,因而认识两者的作用时序对聚能型战斗部作用下舰船结构的毁伤研究具有重要意义。首先,基于接触爆炸理论和牛顿第二定律,推导药型罩压垮后加速度和速度公式的基本形式。随后,基于欧拉控制方程,建立聚能装药空中和水下爆炸数值模型,得到装药和药型罩交界面处压力时程曲线,定量地确定药型罩压垮的加速度和速度公式,通过理论公式可解决不同炸高下聚能侵彻体和直达冲击波先后到达目标的问题。为了验证理论公式的可靠性,讨论了空气域长度为5倍装药半径时的复杂工况,数值模拟结果和理论推导结果基本一致:当空气域长度为5倍装药半径时,炸高在3倍装药半径之外,冲击波先于侵彻体。提出了药型罩压垮的加速度和速度理论公式的形式和求解聚能侵彻体和冲击波作用时序问题的思路,为分析聚能装药水下爆炸聚能侵彻体和冲击波的作用时序提供了理论依据。Abstract: Damage elements such as high-speed explosively-formed projectiles and strong discontinuous shock waves are generated during the process of the shaped charge associated with the underwater explosion. The theory on the action time sequence of the explosively-formed projectile and the shock wave should be refined because their action time is close. Therefore, it is of great significance to investigate the action time sequence of different loads and their damage on ship structures. First, the formulations of acceleration and velocity equations are deduced in the forming process of the explosively-formed projectile, based on the contact explosion theory and Newton’s second law. Subsequently, based on the Eulerian governing equations, numerical models of air and water explosions of shaped charges are established. The evolution of pressure at the interaction of the charge and the liner is obtained. The acceleration and velocity equations of the explosively-formed projectile are presented quantitatively in this paper as a result. Besides, the obtained theoretical formulation can be utilized to solve the problem of the action time sequence of the explosively-formed projectile and direct shock wave. In order to verify the reliability of this theoretical formulation, the case in which the air cavity length is five times of the charge radius is studied. The numerical results are in general agreement with those of the theoretical derivation. The results show that when the length of the air cavity is five times of the charge radius and the stand-off distance is greater than three times of the charge radius, the shock wave precedes the explosively-formed projectile. The basic form of theoretical formulas is presented for the acceleration and velocity of the explosively-formed projectile. Moreover, the idea of solving the action time sequence problem of these two loads provides a theoretical basis for analyzing the action time sequence of underwater explosions.
-
A1/GPa B1/GPa R1 R2 ω1 ρe/(kg·m−3) DCJ/(m·s−1) Ee/(GJ·m−3) pCJ/GPa 778.28 7.07 4.20 1.00 0.30 1891 9110 10.5 42.0 表 2 不同数值模型对应的工况
Table 2. Different cases corresponding to numerical models
工况 介质 空气域长度 1 空气 无限 2 水 20倍装药半径 3 水 5倍装药半径 -
[1] LI J T, HUANG C, MA T, et al. Numerical investigation of composite laminate subjected to combined loadings with blast and fragments [J]. Composite Structures, 2019, 214: 335–347. DOI: 10.1016/j.compstruct.2019.02.019. [2] ZHANG L, WANG X, WANG Y T, et al. High-hardness polyurea coated steel plates subjected to combined loadings of shock wave and fragments [J]. Latin American Journal of Solids and Structures, 2022, 19(2): e433. DOI: 10.1590/1679-78256882. [3] WANG C L, ZHOU G, MA K, et al. Research on damage of typical water-containing composite structure under different types of charge [J]. Journal of Physics: Conference Series, 2020, 1507(3): 032066. DOI: 10.1088/1742-6596/1507/3/032066. [4] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性 [J]. 爆炸与冲击, 2015, 35(1): 116–123. DOI: 10.11883/1001-1455(2015)01-0116-08.HOU H L, ZHANG C L, LI M, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments [J]. Explosion and Shock Waves, 2015, 35(1): 116–123. DOI: 10.11883/1001-1455(2015)01-0116-08. [5] 张成亮, 朱锡, 侯海量, 等. 爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究 [J]. 振动与冲击, 2014, 35(15): 184–188. DOI: 10.13465/j.cnki.jvs.2014.15.032.ZHANG C L, ZHU X, HOU H L, et al. Tests for combined damage effect of blast waves and high-velocity fragments on composite sandwich plates [J]. Journal of Vibration and Shock, 2014, 35(15): 184–188. DOI: 10.13465/j.cnki.jvs.2014.15.032. [6] 李茂, 高圣智, 侯海量, 等. 空爆冲击波与破片群联合作用下聚脲涂覆陶瓷复合装甲结构毁伤特性 [J]. 爆炸与冲击, 2020, 40(11): 111403. DOI: 10.11883/bzycj-2019-0119.LI M, GAO S Z, HOU H L, et al. Damage characteristics of polyurea coated ceramic/steel composite armor structures subjected to combined loadings of blast and high-velocity fragments [J]. Explosion and Shock Waves, 2020, 40(11): 111403. DOI: 10.11883/bzycj-2019-0119. [7] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. DOI: 10.1016/j.ijimpeng.2009.02.008. [8] 吴华鑫, 丁剑锋, 程瑞琪, 等. 舰船防护结构抗近爆毁伤作用数值模拟 [J]. 兵器装备工程学报, 2021, 42(4): 91–96. DOI: 10.11809/bqzbgcxb2021.04.017.WU H X, DING J F, CHENG R Q, et al. Numerical simulation of near explosion damage effect on ship protective structure [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 91–96. DOI: 10.11809/bqzbgcxb2021.04.017. [9] 夏冰寒, 王金相, 周楠, 等. 柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序 [J]. 高压物理学报, 2020, 34(1): 015101. DOI: 10.11858/gywlxb.20190780.XIA B H, WANG J X, ZHOU N, et al. Blast wave and time sequence of prefabricated fragments for scaled warhead with cylindrical charge [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015101. DOI: 10.11858/gywlxb.20190780. [10] 陈长海, 侯海量, 朱锡, 等. 破片式战斗部空中爆炸下冲击波与破片的耦合作用 [J]. 高压物理学报, 2018, 32(1): 015104. DOI: 10.11858/gywlxb.20170849.CHEN C H, HOU H L, ZHU X, et al. Coupling action spans for air-blast waves and fragments by fragmentation warheads exploding in air [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015104. DOI: 10.11858/gywlxb.20170849. [11] 郑红伟, 陈长海, 侯海量, 等. 爆炸冲击波和高速破片载荷的复合作用特性及判据研究 [J]. 振动与冲击, 2019, 38(3): 24–31, 38. DOI: 10.13465/j.cnki.jvs.2019.03.004.ZHENG H W, CHEN C H, HOU H L, et al. Multiple impact features of blast shock waves and high-velocity fragments on clamped square plates and a criterion to judge if multiple impact happens [J]. Journal of Vibration and Shock, 2019, 38(3): 24–31, 38. DOI: 10.13465/j.cnki.jvs.2019.03.004. [12] 吕勇, 石全, 钱芳, 等. 不同时序破片和冲击波在对天线的复合毁伤分析 [J]. 火力与指挥控制, 2014, 39(3): 128–132,139. DOI: 10.3969/j.issn.1002-0640.2014.03.032.LÜ Y, SHI Q, QIAN F, et al. Analysis of multiplex damages for fragment and shock wave in different time sequence to antenna [J]. Fire Control & Command Control, 2014, 39(3): 128–132,139. DOI: 10.3969/j.issn.1002-0640.2014.03.032. [13] 赵德辉, 许金余, 张燕. 武器爆炸条件下冲击波与弹片共同作用数值模拟分析 [J]. 西北工业大学学报, 2006, 24(3): 334–337. DOI: 10.3969/j.issn.1000-2758.2006.03.014.ZHAO D H, XU J Y, ZHANG Y. Velocities and displacements of shrapnel and shock wave during blast [J]. Journal of Northwestern Polytechnical University, 2006, 24(3): 334–337. DOI: 10.3969/j.issn.1000-2758.2006.03.014. [14] 侯俊亮, 蒋建伟, 李应波, 等. 杀爆战斗部破片和冲击波对目标的耦合作用 [J]. 火炸药学报, 2020, 43(3): 335–340. DOI: 10.14077/j.issn.1007-7812.201909009.HOU J L, JIANG J W, LI Y B, et al. Study on the coupling effect of fragments and shock wave of the blast-fragmentation warhead on typical targets [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 335–340. DOI: 10.14077/j.issn.1007-7812.201909009. [15] 李峰, 石全, 张芳, 等. 破片和冲击波复合作用下装甲板毁伤效应预测 [J]. 火力与指挥控制, 2020, 45(11): 101–105. DOI: 10.3969/j.issn.1002-0640.2020.11.019.LI F, SHI Q, ZHANG F, et al. Prediction of damage effect of armor plate under combined action of fragments and shock wave [J]. Fire Control and Command Control, 2020, 45(11): 101–105. DOI: 10.3969/j.issn.1002-0640.2020.11.019. [16] 王远飞. 接触爆炸作用金属材料中冲击波的衰减 [D]. 南京: 南京理工大学, 2007: 5–6. [17] 王作山, 刘玉存, 郑敏, 等. 爆轰冲击波在有机隔板中衰减模型的研究 [J]. 应用基础与工程科学学报, 2001, 9(4): 316–319. DOI: 10.3969/j.issn.1005-0930.2001.04.004.WANG Z S, LIU Y C, ZHENG M, et al. Study on the attenuating model of detonation shock wave in the PMMA gap [J]. Journal of Basic Science and Engineering, 2001, 9(4): 316–319. DOI: 10.3969/j.issn.1005-0930.2001.04.004. [18] 李金河, 尚海林, 傅华. 平面冲击波在有机玻璃中的衰减规律 [J]. 高压物理学报, 2018, 32(4): 044201. DOI: 10.11858/gywlxb.20170643.LI J H, SHANG H L, FU H. Attenuation of plane shock wave in PMMA [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044201. DOI: 10.11858/gywlxb.20170643. [19] 刘飞. 爆炸成型弹丸(EFP)研制及其工程破坏效应研究 [D]. 安徽合肥: 中国科学技术大学, 2006: 26–30.LIU F. The explosively formed penetrator and its engineering damage effects research [D]. Hefei, Anhui, China: University of Science and Technology of China, 2006: 26–30. [20] 杨莉, 张庆明, 巨圆圆. 爆炸成型弹丸对含水复合装甲侵彻的实验研究 [J]. 北京理工大学学报, 2009, 29(3): 197–200. DOI: 10.15918/j.tbit1001-0645.2009.03.007.YANG L, ZHANG Q M, JU Y Y. Experimental study on the penetration of explosively formed projectile against water-partitioned armor [J]. Transactions of Beijing Institute of Technology, 2009, 29(3): 197–200. DOI: 10.15918/j.tbit1001-0645.2009.03.007. [21] 黄正祥. 聚能装药理论与实践 [M]. 北京: 北京理工大学出版社, 2014: 19–59.HUANG Z X. Theory and practice of shaped charge [M]. Beijing, China: Beijing Institute of Technology Press, 2014: 19–59. [22] Century Dynamics Incorporated. Interactive non-linear dynamic analysis software AUTODYNTM user manual [M]. Concord, USA: Century Dynamics Incorporated, 2003. [23] 张晓伟, 段卓平, 张庆明. 钛合金药型罩聚能装药射流成型与侵彻实验研究 [J]. 北京理工大学学报, 2014, 34(12): 1229–1233. DOI: 10.15918/j.tbit1001-0645.2014.12.004.ZHANG X W, DUAN Z P, ZHANG Q M. Experimental study on the jet formation and penetration of conical shaped charges with titanium alloy liner [J]. Transactions of Beijing Institute of Technology, 2014, 34(12): 1229–1233. DOI: 10.15918/j.tbit1001-0645.2014.12.004.