恒定动载下高温水冷后玄武岩的动力特性及本构模型

徐泽辉 何童 杜光钢 刘磊

徐泽辉, 何童, 杜光钢, 刘磊. 恒定动载下高温水冷后玄武岩的动力特性及本构模型[J]. 爆炸与冲击, 2023, 43(6): 063101. doi: 10.11883/bzycj-2022-0421
引用本文: 徐泽辉, 何童, 杜光钢, 刘磊. 恒定动载下高温水冷后玄武岩的动力特性及本构模型[J]. 爆炸与冲击, 2023, 43(6): 063101. doi: 10.11883/bzycj-2022-0421
XU Zehui, HE Tong, DU Guanggang, LIU Lei. Dynamic properties and constitutive model of basalt after high-temperature treatment and water cooling under constant dynamic load[J]. Explosion And Shock Waves, 2023, 43(6): 063101. doi: 10.11883/bzycj-2022-0421
Citation: XU Zehui, HE Tong, DU Guanggang, LIU Lei. Dynamic properties and constitutive model of basalt after high-temperature treatment and water cooling under constant dynamic load[J]. Explosion And Shock Waves, 2023, 43(6): 063101. doi: 10.11883/bzycj-2022-0421

恒定动载下高温水冷后玄武岩的动力特性及本构模型

doi: 10.11883/bzycj-2022-0421
基金项目: 国家自然科学基金(11862010);云南省教育厅科学研究基金(2020Y0088)
详细信息
    作者简介:

    徐泽辉(1997- ),男,硕士研究生,zehui.xu@stu.kust.edu.cn

    通讯作者:

    刘 磊(1981- ),男,博士,教授,kgliulei@kust.edu.cn

  • 中图分类号: O347.3; TU45

Dynamic properties and constitutive model of basalt after high-temperature treatment and water cooling under constant dynamic load

  • 摘要: 为研究地应力、地温和动力扰动下岩石的动力特性,利用带围压的分离式霍普金森压杆装置,对常温(25 ℃)和经历不同高温水冷(100、300、450和600 ℃)后的玄武岩试样开展了恒定动载下不同围压等级(2、4和6 MPa)的动态压缩实验,借助静态力学实验及微观实验的测试结果,分别探讨了温度和围压对玄武岩动态力学特性及破坏特征的影响规律,并基于Weibull分布理论,构建了恒定动载下高温水冷后玄武岩的动态本构模型。结果表明:3组围压下,玄武岩的动态峰值应力、弹性模量均存在温度劣化效应,且围压越高,温度劣化效应越显著;常温和经历100~600 ℃高温水冷后玄武岩的动态峰值应力、弹性模量均存在围压强化效应,但该围压强化效应在600 ℃时有所减弱。围压一定时,随着温度的升高,试样的破碎程度不断加剧;温度一定时,随着围压的升高,试样的破碎程度逐渐降低。所建立的玄武岩动态本构模型与实验结果具有较好的一致性,可用于预测玄武岩在高温水冷和主动围压耦合作用下的动态力学行为,从而为地下资源开发及地下工程防护提供理论支持。
  • 图  1  带围压的SHPB装置

    Figure  1.  SHPB device with confining pressure loading system

    图  2  动态应力平衡检验

    Figure  2.  Dynamic stress balance verification

    图  3  KRX-17B箱式炉

    Figure  3.  KRX-17B box furnace

    图  4  玄武岩的表观形貌

    Figure  4.  Apparent morphology of basalt specimens

    图  5  高温水冷后玄武岩静态应力-应变曲线

    Figure  5.  Static stress-strain curves of basalt after high-temperature water cooling

    图  6  不同围压下高温水冷玄武岩的动态应力-应变曲线

    Figure  6.  Dynamic stress-strain curves of high-temperature water cooling basalt under different confining pressures

    图  7  玄武岩动力特性随温度的变化

    Figure  7.  Variation of dynamic mechanical properties of basalt with temperature

    图  8  玄武岩动力特性随围压的变化

    Figure  8.  Variation of dynamic mechanical properties of basalt with confining pressure

    图  9  不同围压和温度作用下玄武岩试样的动态破坏特征

    Figure  9.  Dynamic failure characteristics of basalt specimens at different confining pressures and temperatures

    图  10  玄武岩损伤过程

    Figure  10.  Damage process of basalt

    图  11  玄武岩的应力-应变实验曲线与理论曲线

    Figure  11.  Experimental and theoretical stress-strain curves of basalt

    表  1  高温水冷玄武岩的基本物理力学参数

    Table  1.   Basic physical and mechanical parameters of basalt after high-temperature treatment and water cooling

    试样温度/℃波速/(m·s−1)准静态抗压强度/MPa静态弹性模量/GPa
    JY-25 254 14689.898.70
    JY-1001003 98883.727.36
    JY-3003003 73573.786.01
    JY-4504502 91156.144.39
    JY-6006002 11028.751.93
    注:“JY-100”中“JY”表示静态压缩,“100”表示温度。
    下载: 导出CSV

    表  2  玄武岩动态压缩实验结果

    Table  2.   Results of dynamic compression experiments on basalt

    试样编号温度/℃围压/MPa动态弹性模量/GPa动态峰值应力/MPa动态峰值应变
    DY-25-1 25224.21194.730.010 2
    DY-25-2 25430.17237.290.009 8
    DY-25-3 25642.47299.280.008 5
    DY-100-1100221.57178.040.010 8
    DY-100-2100425.36214.290.010 6
    DY-100-3100637.89257.440.008 4
    DY-300-1300217.48156.010.011 8
    DY-300-2300421.86204.300.011 8
    DY-300-3300631.11229.400.009 3
    DY-450-1450213.31118.790.014 2
    DY-450-2450416.76151.980.013 3
    DY-450-3450623.04183.900.010 7
    DY-600-16002 7.04 79.860.016 1
    DY-600-26004 8.48 91.960.013 1
    DY-600-3600611.01107.110.011 1
    注:“DY-100-1”中“DY”表示动态压缩,“100”表示温度,“1”表示试件编号。
    下载: 导出CSV

    表  3  本构模型参数

    Table  3.   Constitutive model parameters

    温度/℃围压/MPa静态弹性模量/GPa动态弹性模量/GPa$ m $$ \alpha $
    2528.7024.214.160.014 3
    48.7030.174.400.013 7
    68.7042.474.970.011 8
    10027.3621.573.640.015 4
    47.3625.364.320.014 8
    67.3637.894.550.011 7
    30026.0117.483.470.016 9
    46.0121.864.100.016 7
    66.0131.114.110.013 1
    45024.3913.312.110.020 2
    44.3916.762.490.019 3
    64.3923.043.240.015 4
    60021.93 7.042.750.023 3
    41.93 8.484.800.018 1
    61.9311.016.200.014 9
    下载: 导出CSV
  • [1] ROCCHI V, SAMMONDS P R, KILBURN C R J. Fracturing of Etnean and Vesuvian rocks at high temperatures and low pressures [J]. Journal of Volcanology and Geothermal Research, 2004, 132(2/3): 137–157. DOI: 10.1016/S0377-0273(03)00342-1.
    [2] PARK J W, LEE Y K, PARK C, et al. Crack initiation and propagation thresholds of Hwangdeung granite under elevated temperature [J]. Geosciences Journal, 2022, 26: 715–729. DOI: 10.1007/s12303-022-0015-0.
    [3] KWON S, XIE L M, PARK S, et al. Characterization of 4.2-km-deep fractured granodiorite cores from Pohang geothermal reservoir, Korea [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 771–782. DOI: 10.1007/s00603-018-1639-2.
    [4] HAJPAL M. Changes in sandstones of historical monuments exposed to fire or high temperature [J]. Fire Technology, 2002, 38(4): 373–382. DOI: 10.1023/A:1020174500861.
    [5] 刘业科, 曹平, 衣永亮, 等. 基于地下深部工程岩体特性的RMR系统修正 [J]. 中南大学学报 (自然科学版), 2010, 41(4): 1497–1505.

    LIU Y K, CAO P, YI Y L, et al. Revised RMR system on underground deep engineering rock mass property [J]. Journal of Central South University (Science and Technology), 2010, 41(4): 1497–1505.
    [6] BROTONS V, TOMAS R, IVORRA S, et al. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite [J]. Engineering Geology, 2013, 167: 117–127. DOI: 10.1016/j.enggeo.2013.10.012.
    [7] 逄焕东, 高文乐, 郭得福, 等. 爆破方法改变分区破裂巷道围岩应力传递 [J]. 地下空间与工程学报, 2015, 11(5): 1351–1354.

    PANG H D, GAO W L, GUO D F, et al. Blasting method to change stress transfer of confining rock in tunnels with zonal fracturing [J]. Chinese Journal of Underground Space and Engineering, 2015, 11(5): 1351–1354.
    [8] HARTLIEB P, TOIFL M, KUCHAR F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution [J]. Minerals Engineering, 2016, 91: 34–41. DOI: 10.1016/j.mineng.2015.11.008.
    [9] 陈腾飞, 许金余, 刘石, 等. 经历不同高温后砂岩的动态力学特性实验研究 [J]. 爆炸与冲击, 2014, 34(2): 195–201. DOI: 10.11883/1001-1455(2014)02-0195-07.

    CHEN T F, XU J Y, LIU S, et al. Experimental study on dynamic mechanical properties of post-high-temperature sandstone [J]. Explosion and Shock Waves, 2014, 34(2): 195–201. DOI: 10.11883/1001-1455(2014)02-0195-07.
    [10] GAUTAM P K, VERMA A K, JHA M K, et al. Study of strain rate and thermal damage of Dholpur sandstone at elevated temperature [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3805–3815. DOI: 10.1007/s00603-016-0965-5.
    [11] 朱要亮, 俞缙, 高海东, 等. 水冷却对高温花岗岩的细观损伤及动力学性能影响 [J]. 爆炸与冲击, 2019, 39(8): 083105. DOI: 10.11883/bzycj-2019-0008.

    ZHU Y L, YU J, GAO H D, et al. Effect of water cooling on meso damage and dynamic properties of high temperature granite [J]. Explosion and Shock Waves, 2019, 39(8): 083105. DOI: 10.11883/bzycj-2019-0008.
    [12] YANG R S, FANG S Z, LI W Y, et al. Temperature effects on dynamic compressive behavior of siliceous sandstone [J]. Arabian Journal of Geosciences, 2020, 13(10): 1–13. DOI: 10.1007/s12517-020-05370-2.
    [13] CHAKI S, TAKARLI M, AGBODJAN W P. Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions [J]. Construction and Building Materials, 2008, 22(7): 1456–1461. DOI: 10.1016/j.conbuildmat.2007.04.002.
    [14] 许金余, 刘石. 岩石的高温动态统计损伤本构模型研究 [J]. 地下空间与工程学报, 2014, 10(5): 1109–1113.

    XU J Y, LIU S, Study on constitutive model of rock with high-temperature dynamic statistic damage [J]. Chinese Journal of Underground Space and Engineering, 2014, 10(5): 1109–1113.
    [15] WANG Z L, SHI H, WANG J G. Mechanical behavior and damage constitutive model of granite under coupling of temperature and dynamic loading [J]. Rock Mechanics and Rock Engineering, 2019, 51(10): 3045–3059. DOI: 10.1007/s00603-018-1523-0.
    [16] LIU S, XU J Y, LV X C. Influence of confining pressure and impact loading on mechanical properties of amphibolite and sericite-quartz schist [J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2): 215–222. DOI: 10.1007/s11803-014-0225-1.
    [17] LI E B, GAO L, JIANG X Q, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-dimensional pressure [J]. Environmental Earth Sciences, 2019, 78(14): 1–13.
    [18] 刘军忠, 许金余, 吕晓聪, 等. 围压下岩石的冲击力学行为及动态统计损伤本构模型研究 [J]. 工程力学, 2012, 29(1): 55–63.

    LIU J Z, XU J Y, LV X C, et al. Study on dynamic behavior and damage constitutive model of rock under impact loading with confining pressure [J]. Engineering Mechanics, 2012, 29(1): 55–63.
    [19] WANG S M, XIONG X R, LIU Y S, et al. Stress-strain relationship of sandstone under confining pressure with repetitive impact [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 1–16. DOI: 10.1007/s40948-021-00250-9.
    [20] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676–700. DOI: 10.1088/0370-1301/62/11/302.
    [21] LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [22] 李鸿儒, 王志亮, 郝士云. 主动围压下花岗岩动态力学特性与本构模型研究 [J]. 水文地质工程地质, 2018, 45(3): 49–55.

    LI H R, WANG Z L, HAO S Y. A study of the dynamic properties and constitutive model of granite under active confining pressures [J]. Hydrogeology and Engineering Geology, 2018, 45(3): 49–55.
    [23] WONG L N Y, ZHANG Y H, WU Z J. Rock strengthening or weakening upon heating in the mild temperature range? [J]. Engineering Geology, 2020, 272: 105619. DOI: 10.1016/j.enggeo.2020.105619.
    [24] WU X G, HUANG Z W, CHEN Z, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite [J]. Applied Thermal Engineering, 2019, 156: 99–110. DOI: 10.1016/j.applthermaleng.2019.04.046.
    [25] 王悦青. 卡房矿山主要生产区域地压监测及预警研究 [D]. 昆明: 昆明理工大学, 2019.
    [26] 景锋, 盛谦, 张勇慧, 等. 我国原位地应力测量与地应力场分析研究进展 [J]. 岩土力学, 2011, 32(S2): 51–58.

    JING F, SHENG Q, ZHANG Y H, et al. Study advance on in-site geostress measurement and analysis of initial geostress field in China [J]. Rock and Soil Mechanics, 2011, 32(S2): 51–58.
    [27] 李夕兵, 宫凤强, 高科, 等. 一维动静组合加载下岩石冲击破坏试验研究 [J]. 岩石力学与工程学报, 2010, 29(2): 251–260.

    LI X B, GONG F Q, GAO K, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260.
    [28] 刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析 [J]. 岩石力学与工程学报, 2000, 19(4): 408–411. DOI: 10.3321/j.issn:1000-6915.2000.04.002.

    LIU Q S, XU X C. Damage analysis of brittle rock at high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408–411. DOI: 10.3321/j.issn:1000-6915.2000.04.002.
    [29] 曹文贵, 赵明华, 刘成学. 基于Weibull分布的岩石损伤软化模型及其修正方法研究 [J]. 岩石力学与工程学报, 2004, 23(19): 3226–3231. DOI: 10.3321/j.issn:1000-6915.2004.19.003.

    CAO W G, ZHAO M H, LIU C X. Study on the model and its modifying method for rock softening and damage based on weibull random distribution [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226–3231. DOI: 10.3321/j.issn:1000-6915.2004.19.003.
    [30] 张明涛, 王伟, 王奇智, 等. 基于SHPB实验的砂岩动态破坏过程及应变-损伤演化规律研究 [J]. 爆炸与冲击, 2021, 41(9): 093102. DOI: 10.11883/bzycj-2020-0288.

    ZHANG M T, WANG W, WANG Q Z, et al. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments [J]. Explosion and Shock Waves, 2021, 41(9): 093102. DOI: 10.11883/bzycj-2020-0288.
    [31] 张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨 [J]. 岩石力学与工程学报, 2003, 22(1): 30–34. DOI: 10.3321/j.issn:1000-6915.2003.01.005.

    ZHANG Q S, YANG G S, REN J X. New study of damage variable and constitutive equation of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 30–34. DOI: 10.3321/j.issn:1000-6915.2003.01.005.
    [32] 谢和平, 陈至达. 岩石的连续损伤力学模型探讨 [J]. 煤炭学报, 1988(1): 33–42. DOI: 10.13225/j.cnki.jccs.1988.01.005.

    XIE H P, CHENG Z D. Discussion on continuous damage mechanics model of rock [J]. Journal of China Coal Society, 1988(1): 33–42. DOI: 10.13225/j.cnki.jccs.1988.01.005.
    [33] 杜彬. 酸性环境干湿循环作用下红砂岩动态力学特性研究 [D]. 江苏 徐州: 中国矿业大学, 2019.

    DU B. Study on dynamic mechanical properties of red-sandstone under wet-dry cycle in acidic environment [D]. Xuzhou, Jiangsu, China: China University of Mining and Technology, 2019.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  102
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-07
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回