Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading
-
摘要: 为研究高聚物牺牲包层对钢筋混凝土结构的爆炸毁伤缓解效应,开展了带高聚物牺牲包层钢筋混凝土板的接触爆炸试验,同时设置了普通钢筋混凝土板作为对照组,对比分析了高聚物牺牲包层对钢筋混凝土板毁伤特征的影响。此外,运用AUTODYN软件建立了现场爆炸试验的SPH-FEM耦合模型,通过与试验结果的对比,验证了所建耦合模型的可靠性。在此基础上,通过参数敏感性分析,探究了炸药量和高聚物牺牲包层密度、厚度对带高聚物牺牲包层钢筋混凝土板毁伤特性以及吸能特性的影响。结果表明:接触爆炸下,高聚物牺牲包层能够有效地分散爆炸荷载,缓解爆炸荷载对钢筋混凝土板的冲击作用,具有良好的防护性能;药量在一定范围内增大时,高聚物牺牲包层依然能维持较高的吸能水平,增大包层密度和厚度有利于增强高聚物牺牲包层的吸能特性,包层厚度的变化会造成被保护钢筋混凝土板毁伤模式的改变。Abstract: The blast resistance of sacrificial cladding has been extensively studied in the field of blast protection. As a polymer material with a cellular structure, non-water reactive foaming polyurethane also has the potential to act as a sacrificial cladding due to its good mechanical properties. In order to study the blast damage mitigation effect of polymer sacrificial cladding on reinforced concrete structures, a contact explosion test on the reinforced concrete slab with polymer sacrificial cladding was carried out, while an ordinary reinforced concrete slab was set as the control group, and the effect of polymer sacrificial cladding on the damage characteristics of the reinforced concrete slab was compared and analyzed. In addition, the SPH-FEM (coupled smooth particle hydrodynamics and finite element method) coupling model of the field explosion test was established by using AUTODYN software, and the reliability of the coupling model was verified by comparing with the test results. On this basis, the effects of explosive charge, the density, and the thickness of polymer sacrificial cladding on the damage features and energy absorption characteristics of reinforced concrete slabs with polymer sacrificial cladding were investigated through parametric sensitivity analysis. The results show that the polymer sacrificial cladding can effectively disperse the blast loads and mitigate the impact of the blast loads on the reinforced concrete slab with good protective performance under contact explosions. The polymer sacrificial cladding can maintain a high level of energy absorption even with the explosive charge increased within limits. Increasing the density and thickness of the cladding is beneficial to enhance the energy absorption ability of the polymer sacrificial cladding, while the change in thickness will cause a change in the damage mode of the protected reinforced concrete slab. The research results are helpful in providing a relevant reference for the further research and application of the new non-water reactive foaming polyurethane in the field of blast protection of engineering structures.
-
Key words:
- polymer /
- sacrificial cladding /
- reinforced concrete slabs /
- contact explosions /
- damage features
-
表 1 混凝土材料模型主要参数
Table 1. Parameters of the concrete material model
剪切模量G/GPa 体积模量A1/GPa 抗压强度fc/MPa ft/fc fs/fc 失效面常数A 16.7 35.27 40 0.06 0.18 1.6 失效面指数N 残余失效面常数B 残余失效面指数M 损伤常数D1 损伤常数D2 侵蚀应变 0.61 1.6 0.61 0.04 1.0 2.0 表 2 钢筋材料模型主要参数
Table 2. Parameters of the reinforcement steel
密度ρ/(g·cm−3) 体积模量K/GPa 剪切模量G/GPa A/MPa B/MPa C m n Troom/K Tmelt/K 7.83 159 81.8 404 232.4 0.014 1.03 0.26 300 1793 表 3 炸药材料模型主要参数
Table 3. Parameters of the explosive
ρ/(g·cm−3) E/(GJ·m−3) A/GPa B/GPa R1 R2 $\omega $ 1.05 6.0 209.7 3.5 5.76 1.29 0.39 表 4 高聚物材料模型主要参数
Table 4. Parameters of the polymer material model
密度/(g·cm−3) 屈服强度/MPa 最大拉伸应力/MPa 剪切模量/MPa 杨氏模量/MPa 侵蚀应变 0.2 2.04 1.77 18.7 35.8 0.3 表 5 试验后试件的毁伤结果
Table 5. Damage resuls of the specimens after the tests
试件 炸药量/g 牺牲包层 板面 损伤区域直径/cm 损伤区最大深度/cm 裂纹数量/条 PU-RCS 50 有 迎爆面 10 <0.5 0 背爆面 13 <0.8 13 RCS 50 无 迎爆面 15 1 0 背爆面 25 4 10 表 6 模拟结果和试验结果参数对比
Table 6. Parameters comparison of the simulation and experimental results
方法 迎爆面破坏直径/cm 背爆面破坏直径/cm 迎爆面最大毁伤深度/cm 背爆面最大毁伤深度/cm 背爆面裂纹数量 试验 10 13 <0.5 <0.8 13 模拟 10.7 12.5 <0.6 <0.5 16 吻合度 93.46% 96.15% − − 81.25% -
[1] 赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205. [2] 赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058. [3] 赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291. [4] WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006. [5] REBELO H B, LECOMPTE D, CISMASIU C, et al. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding [J]. International Journal of Impact Engineering, 2019, 131: 162–173. DOI: 10.1016/j.ijimpeng.2019.05.013. [6] BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907. [7] 范东宇, 苏彬豪, 彭辉, 等. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究 [J]. 力学学报, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.FAN D Y, SU B H, PENG H, et al. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047. [8] ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076. [9] WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and building materials, 2021, 301: 124092. DOI: 10.1016/j.conbuildmat.2021.124092. [10] FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing [J]. Tunnelling and Underground Space Technology, 2018, 74(4): 185–194. DOI: 10.1016/j.tust.2018.01.018. [11] 王复明, 李曼珺, 方宏远, 等. 黄河大堤高聚物防渗墙稳定性分析 [J]. 人民黄河, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.WANG F M, LI M J, FANG H Y, et al. Analysis of polymer cut-off wall of yellow river dyke [J]. Yellow River, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009. [12] FANG H Y, SU Y J, DU X M, et al. Experimental and numerical investigation on repairing effect of polymer grouting for settlement of high-speed railway unballasted track [J]. Applied Sciences, 2019, 9(21): 4496. DOI: 10.3390/app9214496. [13] WANG Y H, LU J Y, ZHAI X M, et al. Response of energy absorbing connector with polyurethane foam and multiple pleated plates under impact loading [J]. International Journal of Impact Engineering, 2019, 133: 103356. DOI: 10.1016/j.ijimpeng.2019.103356. [14] WANG Y H, ZHANG B Y, LU J Y, et al. Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates [J]. Engineering Structures, 2020, 211: 110404. DOI: 10.1016/j.engstruct.2020.110404. [15] JAMIL A, GUAN Z W, CANTWELL W J, et al. Blast response of aluminium/thermoplastic polyurethane sandwich panels: experimental work and numerical analysis [J]. International Journal of Impact Engineering, 2019, 127: 31–40. DOI: 10.1016/j.ijimpeng.2019.01.003. [16] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.ZHANG Y. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182. [17] 杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究 [J]. 振动与冲击, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.YANG G D, WANG G H, LI Q, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads [J]. Journal of Vibration and Shock, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020. [18] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132. [19] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.