Experimental study on explosion cratering and coupled ground shock in clay
-
摘要: 为获得黏土中爆炸成坑体积与耦合地冲击能量的关系,采用10.5 g TNT厘米级球形炸药球作为爆炸源,在
$\varnothing $ 1500 mm×1490 mm分层式爆炸装置中开展了变埋深条件下的爆炸实验,利用3D扫描设备记录不同埋深下弹坑的真实体积,并通过动态土压力传感器测得地冲击传播衰减规律。实验结果表明:随埋深增大,耦合至黏土中的有效地冲击能量急剧增大,装药中心下方的有效弹坑体积与耦合至黏土中的有效地冲击能量基本呈正比关系,当装药比例埋深与封闭爆炸条件下爆炸空腔半径相当时,耦合至黏土中的有效地冲击能量基本达到饱和。结合实验结果给出了黏土中爆炸耦合地冲击能量分配随装药比例埋深的变化规律,建立了地下爆炸等效封闭当量计算方法,为地下工程抗爆设计提供了理论依据。Abstract: To study the distribution of the coupled ground impact energy due to underground explosions, the key is to obtain the experimental parameters of the volume of the crater compression zone under the coupling effect between the clay medium and explosion energy. To reveal the relationship between the distribution of the blast coupling ground impact energy in clay and the compression volume of the crater, 10.5 g TNT explosive spheres were used as the blast source, and blast experiments under variable burial depths were conducted in a$\varnothing $ 1500 mm×1490 mm layered blast test apparatus. The real volume of the crater under different burial depths was recorded by using a three-dimensional scanning equipment, and the pressure data under different distances from the blast center were measured by earth pressure sensors to obtain the blast wave propagation law. Meanwhile, the law of energy distribution of coupled ground impact was theoretically revealed, which is proportional to the volume of medium damage. Three conversion relations of coupling coefficient were given, and the coupling coefficient curve of clay was drawn using the Boltzmann function. The experimental results show that in the range of −0.056 m/kg1/3≤h≤0.37 m/kg1/3, as the burial depth of the charge increases, the attenuation coefficient increases, and the peak pressure of the blast core distance also increases, and the share of the explosion impact coupling medium also increases with the increase of the charging burial depth. This indicates that the increase of the charging proportion burial depth intensifies the effects of the explosion. This finding implies that the change in burial depth has a negligible impact on the energy of the explosion impact coupling medium. The critical depth of ground shock effect of compacted clay is about 0.55 m/kg1/3, which is slightly larger than the radius of underground closed explosion cavity. The experimental value of visible diameter is in good agreement with the corresponding ConWep predicted value. The macroscopic failure critical depth is about 1.46 m/kg1/3. Combined with the test results, the variation law of the energy distribution of explosion coupling ground impact in clay with the buried depth of the charge ratio is given, and the calculation method of the equivalent closed equivalent of underground explosion is established. This provides a load basis for underground engineering blast resistance research and structural design.-
Key words:
- mechanics of explosion /
- compacted clay /
- critical depth /
- coupling coefficient
-
表 1 装药埋深(
$h $ )及爆心距($R $ )设计Table 1. Design of burial depth of charge (
$h $ ) and burst core distance ($R $ )工况 h/(m·kg−1/3) R/(m·kg−1/3) 1# 2# 3# 4# 5# 1 −0.056 0.799 1.427 2.295 3.274 4.000 2 0 0.799 1.427 2.295 3.274 4.000 3 0.14 0.799 1.427 2.295 3.274 4.000 4 0.37 0.799 1.427 2.295 3.274 4.000 5 0.55 0.799 1.427 2.295 3.274 4.000 6 1.19 0.799 1.427 2.295 3.274 4.000 7 1.46 0.479 1.155 2.068 3.046 3.772 表 2 不同埋深条件下弹坑尺寸数据
Table 2. Size data of craters under different burial depths
工况 h/
(m·kg−1/3)rv /
(m·kg−1/3)dv /
(m·kg−1/3)Vv /
(m3·kg−1)ra /
(m·kg−1/3)d/
(m·kg−1/3)V/
(m3·kg−1)1 −0.056 0.261 0.247 0.035 0.179 0.251 0.017 2 0 0.280 0.292 0.048 0.184 0.260 0.018 3 0.14 0.580 0.539 0.380 0.289 0.379 0.066 4 0.37 0.682 0.685 0.667 0.340 0.416 0.101 5 0.55 0.896 0.776 1.304 0.453 0.459 0.197 6 1.19 0.615 0.502 0.397 0.478 0.478 0.228 7 1.46 0 0 0.000 0.479 0.479 0.230 注:rv、dv、Vv分别为可视弹坑的半径、深度和体积,ra、d、V为有效弹坑的半径、深度和体积。 表 3 黏土中各比例埋深下地冲击应力峰值数据
Table 3. Subsurface impact stress peak data of each proportion buried depth in clay
工况 h/
(m·kg−1/3)σpk/MPa 工况 h/
(m·kg−1/3)σpk/MPa 1# 2# 3# 4# 5# 1# 2# 3# 4# 5# 1 −0.056 0.047 0.015 0.019 0.011 0.002 5 0.55 0.358 0.155 0.115 0.086 0.022 2 0 0.050 0.038 0.021 0.015 0.006 6 1.19 0.334 0.156 0.126 0.115 0.032 3 0.14 0.141 0.092 0.074 0.054 0.015 7 1.46 1.080 0.196 0.124 0.100 0.024 4 0.37 0.184 0.100 0.070 0.052 0.014 (0.389) (0.166) (0.047) (0.023) (0.015) 注:(1)1~6炮次1#、2#、3#、4#、5#测点比例距离分别为0.799、1.427、2.295、3.274、4.000;(2)第7炮次1#、2#、3#、4#、5#测点比例距离分别为0.479、1.155、2.068、3.046、3.772;(3)第7炮括号内数据为将第7炮次数据在比例距离0.799、1.427、2.295、3.274、4.000处换算数据。 表 4 不同装药比例埋深条件下拟合参数
Table 4. Fitting parameters with different scaled buried depths of charge
h/(m·kg−1/3) n A $\bar n$ A' −0.056 1.16 0.035 1.14 0.031 0 1.05 0.038 0.041 0.14 1.09 0.120 0.123 0.37 1.07 0.124 0.148 0.55 1.23 0.261 0.258 1.19 1.16 0.267 0.258 1.46 1.19 0.269 0.260 -
[1] ADUSHKIN V V, SPIVAK A. Underground explosions [M]. Lexington: Weston Geophysical Corp, 2015: 431-480. [2] Department of the Army. Fundamentals of protective design for conventional weapons: TM5-855-1 [R]. Washington: US Department of the Army, 1986. [3] BALADI G Y, NELSON I. Ground shock calculation parameter study: S-71-4 [R]. Mississippi: US Army Waterway Experimental Station, 1974. [4] JAMES K. Cense explosion test program: report 2, case 2, explosions in soil [R]. Mississippi: US Army Waterway Experimental Station, 1977. [5] 乔登江. 地下核爆炸现象学概论 [M]. 北京: 国防工业出版社, 2002. [6] 梁霍夫 Γ M. 岩土中爆炸动力学基础 [M]. 刘光寰, 王明洋, 译. 南京: 工程兵工程学院, 1993. [7] YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011. [8] 穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112–116. DOI: 10.3969/j.issn.1009-3443.2010.02.003.MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112–116. DOI: 10.3969/j.issn.1009-3443.2010.02.003. [9] 穆朝民, 任辉启, 李永池, 等. 变埋深条件下饱和土爆炸能量耦合系数的试验研究 [J]. 岩土力学, 2010, 31(5): 1574–1578. DOI: 10.16285/j.rsm.2010.05.006.MU C M, REN H Q, LI Y C, et al. Experiment study of explosion energy coupling coefficient with different burial depths in saturated soils [J]. Rock and Soil Mechanics, 2010, 31(5): 1574–1578. DOI: 10.16285/j.rsm.2010.05.006. [10] 施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05. [11] 叶亚齐, 任辉启, 李永池, 等. 砂质黏土中不同深度爆炸自由场地冲击参数预计方法研究 [J]. 岩石力学与工程学报, 2011, 30(9): 1918–1923.YE Y Q, REN H Q, LI Y C, et al. Study of prediction of ground shock parameters in free field at different depths of burst in sandy clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1918–1923. [12] 赵红玲, 侯爱军, 童怀峰, 等. 石灰岩中不同埋深爆炸自由场直接地冲击参数的预计方法 [J]. 爆炸与冲击, 2011, 31(3): 290–294. DOI: 10.11883/1001-1455(2011)03-0290-05.ZHAO H L, HOU A J, TONG H F, et al. Prediction method of the direct ground shock parameters of explosion at different buried depths in free field of limestone [J]. Explosion and Shock Waves, 2011, 31(3): 290–294. DOI: 10.11883/1001-1455(2011)03-0290-05. [13] 何翔, 吴祥云, 李永池, 等. 石灰岩中爆炸成坑和地冲击传播规律的试验研究 [J]. 岩石力学与工程学报, 2004, 23(5): 725–729. DOI: 10.3321/j.issn:1000-6915.2004.05.004.HE X, WU X Y, LI Y C, et al. Testing study on crater formed by explosion and propagation laws of ground shock in limestone [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 725–729. DOI: 10.3321/j.issn:1000-6915.2004.05.004. [14] JAMES K. Cense explosion test program: report 1, case 1, explosions in sandstone [R]. Mississippi: U S Army Waterway Experimental Station, 1977. [15] Department of the Army. Structures to resist the effects of accidental explosions: TM 5-1300 [R]. Washington: US Department of the Army, 1990. [16] 李晓军, 张殿臣, 李清献, 等. 常规武器破坏效应与工程防护技术 [M]. 洛阳: 总参工程兵科研三所, 2001. [17] 李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.06.021.LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.06.021. [18] LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009. [19] 中华人民共和国住房和城乡建设部. GB/T 50123—2019 土工试验方法标准 [S]. 北京: 中国计划出版社, 2019: 16–59.Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50123—2019 Standard for geotechnical testing method [S]. Beijing: China Planning Press, 2019: 16–59. [20] KRAUTHAMMER T. Modern protective structures [M]. Boca: CRC Press, 2008. [21] DAVID H W. User’s guide for microcomputer programs CONWEP and FUNPRO: applications of TMS-855-1, “fundamentals of protective design for conventional weapons”: AD-A195867 [R]. 1988. [22] 徐天涵. 钻地核爆地冲击效应与防护研究 [D]. 南京: 中国人民解放军陆军工程大学, 2021: 41–79. [23] HASKELL N A. Analytic approximation for the elastic radiation from a contained underground explosion [J]. Journal of Geophysical Research, 1967, 72(10): 2583–2587. DOI: 10.1029/JZ072i010p02583. [24] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part Ⅲ: The calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078. [25] SHISHKIN N I. Seismic efficiency of a contact explosion and a high-velocity impact [J]. Journal of Applied Mechanics and Technical Physics, 2007, 48(2): 145–152. DOI: 10.1007/s10808-007-0019-6.