钢筋混凝土箱梁近场爆炸响应的试验与数值模拟

周广盼 林志成 王明洋 范进 张于晔

周广盼, 林志成, 王明洋, 范进, 张于晔. 钢筋混凝土箱梁近场爆炸响应的试验与数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072201. doi: 10.11883/bzycj-2022-0468
引用本文: 周广盼, 林志成, 王明洋, 范进, 张于晔. 钢筋混凝土箱梁近场爆炸响应的试验与数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072201. doi: 10.11883/bzycj-2022-0468
ZHOU Guangpan, LIN Zhicheng, WANG Mingyang, FAN Jin, ZHANG Yuye. Test and numerical study on the near-field explosion response of reinforced concrete box girder[J]. Explosion And Shock Waves, 2023, 43(7): 072201. doi: 10.11883/bzycj-2022-0468
Citation: ZHOU Guangpan, LIN Zhicheng, WANG Mingyang, FAN Jin, ZHANG Yuye. Test and numerical study on the near-field explosion response of reinforced concrete box girder[J]. Explosion And Shock Waves, 2023, 43(7): 072201. doi: 10.11883/bzycj-2022-0468

钢筋混凝土箱梁近场爆炸响应的试验与数值模拟

doi: 10.11883/bzycj-2022-0468
基金项目: 江苏省自然科学基金(BK20200494;BK20211196);国家自然科学基金(52278188);中国博士后科学基金(2021M701725);江苏省博士后科研资助计划(2021K522C);中央高校基本科研业务费专项资金(30919011246)
详细信息
    作者简介:

    周广盼(1989- ),男,博士,讲师,guangpanzhou@njust.edu.cn

    通讯作者:

    王明洋(1966- ),男,博士,教授,wmyrf@163.com

  • 中图分类号: O383;U447

Test and numerical study on the near-field explosion response of reinforced concrete box girder

  • 摘要: 为了研究近场爆炸作用下单箱三室混凝土箱梁的动力响应和破坏特征,开展了缩比试件爆炸试验和数值模拟。以原型桥梁主梁截面按1∶3缩比设计和制作了箱梁试件,测量了3 kg TNT药柱爆炸作用下试件的反射超压、钢筋应变、竖向位移及破洞形态;采用LS-DYNA软件进行了箱梁爆炸响应模拟,结合试验数据验证了数值模拟方法的可靠性;分析了TNT当量、起爆位置、混凝土强度、配筋率对箱梁抗爆性能的影响。结果表明:3 kg TNT药柱于箱梁中间箱室中心正上方0.4 m处起爆时,在中间箱室顶板中心形成一个椭圆形的贯穿破口,破口沿横、纵桥向长度分别为41.50、45.50 cm;中间箱室顶板底面的混凝土发生大面积剥落,呈现喇叭状冲切破坏特征;多室箱梁的超宽截面形式使得其爆炸响应沿横桥向分布不均匀;箱梁底板竖向位移峰值和钢筋应变峰值随药量的增大而增大,采用最小二乘法得到了对应的拟合曲线表达式;不同起爆位置下,中间箱室底板中心的竖向位移均大于两侧箱室中心的。
  • 图  1  节段箱梁试件尺寸(单位:mm)

    Figure  1.  Specification of specimen (unit: mm)

    图  2  箱梁爆炸试验现场布置图

    Figure  2.  Site layout of box girder explosion test

    图  3  TNT药柱尺寸图

    Figure  3.  Dimension of TNT column

    图  4  钢筋应变测点布置

    Figure  4.  Layout of reinforcement strain measuring points

    图  5  压力、加速度及位移测点布置

    Figure  5.  Layout of measuring points of pressure, acceleration and displacement

    图  6  爆炸冲击波反射超压对比

    Figure  6.  Comparison of reflected overpressures of explosion shock wave

    图  7  箱梁试件损伤形态试验结果

    Figure  7.  Test results of damage form of the girder specimen

    图  8  各箱室底板中心竖向位移时程曲线试验结果

    Figure  8.  Measured time history curves of vertical displacement at bottom plate center of each chamber

    图  9  钢筋应变时程曲线试验结果

    Figure  9.  Test results of time history curve on reinforcement strains

    图  10  箱梁底板加速度时程曲线试验结果

    Figure  10.  Test results of acceleration time history curve of box girder bottom plate

    图  11  箱梁有限元模型

    Figure  11.  Finite element model of box girder

    图  12  箱梁试件损伤形态的试验与数值模拟对比

    Figure  12.  Comparison of test and numerical simulations on damage morphology of box girder specimens

    图  13  不同比例爆距下箱梁的损伤形态云图

    Figure  13.  Damage morphology of box girder under different proportional blast distances

    图  14  不同比例爆距下箱梁底板中心竖向位移时程曲线

    Figure  14.  Time history curves of vertical displacement at the center of bottom plate of the box girder under different proportional blast distances

    图  15  不同比例爆距下箱梁底板中心钢筋应变时程曲线

    Figure  15.  Time history curves of the reinforcement strain at the center of bottom plate of the box girder under different proportional blast distances

    图  16  箱梁底板中心竖向位移峰值和钢筋应变峰值与药量关系的拟合曲线

    Figure  16.  Fitting curves of the relationships between the peak vertical displacement and rebar strain of the bottom plate center of the girder and the charge amount

    图  17  不同混凝土抗压强度下箱梁底板中心的位移时程曲线

    Figure  17.  Time history curves of box girder bottom plate center displacement at different concrete compressive strengths

    图  18  不同配筋率下箱梁底板中心位移时程曲线

    Figure  18.  Time history curves of box girder bottom plate center displacement at different reinforcement ratios

    图  19  不同起爆位置下箱梁的损伤形态云图

    Figure  19.  Damage morphologies of box girders varied with different initiation positions

    图  20  工况1~3作用下箱梁底板的竖向位移时程曲线

    Figure  20.  Time history curves of vertical displacements of box girder bottom under conditions 1−3

    表  1  箱梁爆炸试验测点说明

    Table  1.   Description of measuring points for explosion test of box girder

    测点类别测试内容测试方式测点数量
    SR钢筋应变BE120-6AA-X 30型电阻应变片12
    PC反射超压PVDF压电薄膜 3
    DC加速度YK-0003pc型加速度传感器 3
    AC竖向位移WYL33型位移传感器 3
    下载: 导出CSV

    表  2  混凝土材料参数

    Table  2.   Material parameters of concrete

    参数ρ/(kg·m−3)A0/MPaRSIZEUCFLCRATE
    数值2300−3039.371.45×10−4−1
    注:ρ为材料密度;A0为最大剪切破坏面参数,根据混凝土立方体抗压强度测试结果取值;RSIZE、UCF、LCRATE为LS-DYNA软件中的选项卡名称。其中,RSIZE代表长度单位的转换系数;UCF为应力单位的转化系数;LCRATE表示应变率曲线调用类型,若输入−1,LS-DYNA软件将自动生成并调用应变率曲线;若输入任一正值,则采用用户自定义的应变率曲线。
    下载: 导出CSV

    表  3  钢筋材料参数

    Table  3.   Material parameter of reinforcement

    ρ/(kg·m−3)E/PaνσY/PaEt/PaβCPεF
    78002×10110.34.68×1082.1×10904050.1
    注:ρ为材料密度;E为弹性模量;ν为泊松比;σY为屈服应力;Et为切线模量;β为硬化参数,根据不同情况取0、1,各项同性(β=1)、随动硬化(β=0)、混合硬化(0<β<1);CP为适用于Cowper-Symonds应变率模型的参数;εF为侵蚀单元的失效应变;VP为LS-DYNA软件中的选项卡名称,代表速率效应公式的调用编号,输入0表示考虑比例屈服应力,输入1表示考虑黏塑性应变率效应。
    下载: 导出CSV

    表  4  不同网格尺寸下箱梁混凝土破口长度和竖向位移对比

    Table  4.   Comparison of concrete breach length and vertical displacement of girder under different mesh sizes

    网格尺寸/mm顶板破口长度/cm破口长度误差比/%底板竖向位移/mm位移误差比/%
    沿长边方向沿短边方向沿长边方向沿短边方向
    试验值41.5045.5019.26
    2045.5442.72 9.73−6.1121.3510.85
    3045.9545.2210.72−0.6221.6012.15
    4047.6648.5514.80 6.7022.0514.49
    下载: 导出CSV

    表  5  不同药量下箱梁混凝土破口长度和竖向位移对比

    Table  5.   Comparison of concrete breach length and vertical displacement of girder under different TNT equivalents

    药量/kg爆心位置爆高/m比例爆距/(m∙kg−1/3)贯穿破口长度/cm竖向位移峰值/mm
    沿长边方向沿短边方向
    0.3箱室2中心0.40.598即将贯穿即将贯穿4.51
    1箱室2中心0.40.40012.9812.819.82
    3箱室2中心0.40.27745.9545.2221.60
    5箱室2中心0.40.23459.6558.1832.18
    8箱室2中心0.40.20070.7971.1061.39
    10箱室2中心0.40.18679.4377.6382.88
    下载: 导出CSV

    表  6  工况设计

    Table  6.   Working condition design

    工况TNT当量/kg爆心位置爆心高度/m比例爆距/(m∙kg−1/3)
    13箱室1顶板中心正上方0.40.28
    23箱室2顶板中心正上方0.40.28
    33箱室3顶板中心正上方0.40.28
    下载: 导出CSV
  • [1] YAO S J, ZHAO N, JIANG Z G, et al. Dynamic response of steel box girder under internal blast loading [J]. Advances in Civil Engineering, 2018, 2018: 9676298. DOI: 10.1155/2018/9676298.
    [2] 杨赞. 爆炸荷载下钢筋混凝土箱梁动态响应研究 [D]. 长沙: 国防科技大学, 2019: 1–2. DOI: 10.27052/d.cnki.gzjgu.2019.001121.

    YANG Z. Dynamic response study of reinforced concrete box girder under blasting loads [D]. Changsha: National University of Defense Technology, 2019: 1–2. DOI: 10.27052/d.cnki.gzjgu.2019.001121.
    [3] 杜刚. 爆炸荷载作用下钢筋混凝土T梁桥和箱梁桥的动态响应研究 [D]. 武汉: 武汉科技大学, 2018: 1–2.

    DU G. Dynamic analysis of reinforced concrete T and box girder bridge subjected to blast load [D]. Wuhan: Wuhan University of Science and Technology, 2018: 1–2.
    [4] 刘亚玲, 刘玉存, 耿少波, 等. 钢箱梁结构在爆炸冲击波作用下局部破坏影响因素试验研究 [J]. 振动与冲击, 2018, 37(24): 229–236. DOI: 10.13465/j.cnki.jvs.2018.24.034.

    LIU Y L, LIU Y C, GENG S B, et al. An experimental study on the local damage and influence factors of a steel box girder under explosive shock wave [J]. Journal of Vibration and Shock, 2018, 37(24): 229–236. DOI: 10.13465/j.cnki.jvs.2018.24.034.
    [5] 耿少波, 刘亚玲, 薛建英. 钢箱梁缩尺模型爆炸冲击波作用下破坏实验研究 [J]. 工程力学, 2017, 34(S1): 84–88. DOI: 10.6052/j.issn.1000-4750.2016.03.S007.

    GENG S B, LIU Y L, XUE J Y. Experimental studies on steel box girder scale model under blast load [J]. Engineering Mechanics, 2017, 34(S1): 84–88. DOI: 10.6052/j.issn.1000-4750.2016.03.S007.
    [6] 闫秋实, 赵凯凯, 李述涛, 等. 爆炸荷载作用下箱梁的破坏模式与损伤评估 [J]. 北京工业大学学报, 2022, 48(9): 961–967,978. DOI: 10.11936/bjutxb2021080007.

    YAN Q S, ZHAO K K, LI S T, et al. Failure mode and damage assessment of box girder under explosive loading [J]. Journal of Beijing University of Technology, 2022, 48(9): 961–967,978. DOI: 10.11936/bjutxb2021080007.
    [7] 邱敏杰. 爆炸荷载作用下预应力混凝土桥梁结构的动态响应及破坏机理研究 [D]. 西安: 西安理工大学, 2021: 1–2. DOI: 10.27398/d.cnki.gxalu.2021.001164.

    QIU M J. Research on dynamic response and failure mechanism of prestressed concrete bridge structure under blast load [D]. Xi’an: Xi’an University of Technology, 2021: 1–2. DOI: 10.27398/d.cnki.gxalu.2021.001164.
    [8] 胡志坚, 李杨, 俞文生, 等. 近场爆炸作用下钢箱梁抗爆性能研究 [J]. 爆破, 2019, 36(1): 117–125,154. DOI: 10.3963/j.issn.1001-487X.2019.01.018.

    HU Z J, LI Y, YU W S, et al. Anti-blast resistance analysis of steel box girder under close-by blast [J]. Blasting, 2019, 36(1): 117–125,154. DOI: 10.3963/j.issn.1001-487X.2019.01.018.
    [9] 蒋志刚, 朱新明, 严波, 等. 钢箱梁爆炸冲击局部破坏的数值模拟 [J]. 振动与冲击, 2013, 32(13): 159–164. DOI: 10.13465/j.cnki.jvs.2013.13.008.

    JIANG Z G, ZHU X M, YAN B, et al. Numerical simulation for local failure of a steel box girder under blast loading [J]. Journal of Vibration and Shock, 2013, 32(13): 159–164. DOI: 10.13465/j.cnki.jvs.2013.13.008.
    [10] IBRAHIM A, SALIM H. Finite-element analysis of reinforced-concrete box girder bridges under close-in detonations [J]. Journal of Performance of Constructed Facilities, 2013, 27(6): 774–784. DOI: 10.1061/(ASCE)CF.1943-5509.0000360.
    [11] MA L L, WU H, FANG Q, et al. Displacement-based blast-resistant evaluation for simply-supported RC girder bridge under below-deck explosions [J]. Engineering Structures, 2022, 266: 114637. DOI: 10.1016/j.engstruct.2022.114637.
    [12] 汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion and Shock Waves, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.
    [13] 王明洋, 钱七虎, 赵跃堂. 接触爆炸作用下钢板-钢纤维钢筋混凝土遮弹层设计方法(Ⅱ) [J]. 爆炸与冲击, 2002, 22(2): 163–168. DOI: 10.3321/j.issn:1001-1455.2002.02.012.

    WANG M Y, QIAN Q H, ZHAO Y T. The design method for shelter plate of steel plate and steel fiber reinforced concrete under contact detonation (Ⅱ) [J]. Explosion and Shock Waves, 2002, 22(2): 163–168. DOI: 10.3321/j.issn:1001-1455.2002.02.012.
    [14] LIAO Z, LI Z Z, XUE Y L, et al. Study on anti-explosion behavior of high-strength reinforced concrete beam under blast loading [J]. Strength of Materials, 2019, 51(6): 926–938. DOI: 10.1007/s11223-020-00143-4.
    [15] CAI R Z, LI Y Z, ZHANG C X, et al. Size effect on reinforced concrete slabs under direct contact explosion [J]. Engineering Structures, 2022, 252: 113656. DOI: 10.1016/j.engstruct.2021.113656.
    [16] BRAIMAH A, SIBA F. Near-field explosion effects on reinforced concrete columns: an experimental investigation [J]. Canadian Journal of Civil Engineering, 2018, 45(4): 289–303. DOI: 10.1139/CJCE-2016-0390.
    [17] 周广盼. 超宽混凝土自锚式悬索桥成桥状态控制与空间力学行为研究 [D]. 南京: 东南大学, 2018: 20–25.

    ZHOU G P. Study of completion state control and spatial mechanics behaviors of self-anchored suspension bridge with extra-wide concrete girder [D]. Nanjing: Southeast University, 2018: 20–25.
    [18] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准GB/T 50152-2012 [S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of concrete structures GB/T 50152-2012 [S]. Beijing: China Architecture & Building Press, 2003.
    [19] Department of the Army, the Navy, and the Air Force. TM5-1300, Structures to resist the effects of accidental explosion [M]. NORFOLK, VA USA: Department of the Army Technical Manual, Department of the Navy Publication NAVFAC P-397, Department of the Air Force Manual AFM88-22, 1969: 36–47.
    [20] 中国工程建设标准化协会. 民用建筑防爆设计标准: T/CECS 736-2020 [S]. 北京: 中国建筑工业出版社, 2020.

    China Association for Engineering Construction Standardization, CECS. Code for explosion-proof design of civil buildings: T/CECS 736-2020 [S]. Beijing: China Architecture & Building Press, 2020.
    [21] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [22] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理 [D]. 天津: 天津大学, 2009: 105–106. DOI: 10.7666/d.y1677822.

    SHI Y C. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009: 105–106. DOI: 10.7666/d.y1677822.
    [23] YUAN S J, HAO H, ZONG Z H, et al. Numerical analysis of axial load effects on RC bridge columns under blast loading [J]. Advances in Structural Engineering, 2021, 24(7): 1399–1414. DOI: 10.1177/1369433220979443.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  128
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 修回日期:  2023-04-28
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回