[1] |
SRIVASTAVA M, RATHEE S, TIWARI A, et al. Wire arc additive manufacturing of metals: a review on processes, materials and their behaviour [J]. Materials Chemistry and Physics, 2023, 294: 126988. DOI: 10.1016/j.matchemphys.2022.126988.
|
[2] |
丁东红, 黄荣, 张显程, 等. 电弧增材制造研究进展: 多源信息传感 [J]. 焊接技术, 2022, 51(10): 1–20, 113. DOI: 10.13846/j.cnki.cn12-1070/tg.2022.10.024.DING D H, HUANG R, ZHANG X C, et al. Research progress of wire arc additive manufacturing: multi-source information sensing [J]. Welding Technology, 2022, 51(10): 1–20, 113. DOI: 10.13846/j.cnki.cn12-1070/tg.2022.10.024.
|
[3] |
YAN N, LI Z Z, XU Y B, et al. Shear localization in metallic materials at high strain rates [J]. Progress in Materials Science, 2021, 119: 100755. DOI: 10.1016/j.pmatsci.2020.100755.
|
[4] |
WANG T, ZHU L, WANG C H, et al. Microstructure evolution and dynamic mechanical properties of laser additive manufacturing Ti-6Al-4V under high strain rate [J]. Journal of Beijing Institute of Technology, 2020, 29(4): 568–580. DOI: 10.15918/j.jbit1004-0579.20064.
|
[5] |
LIU Y, MENG J H, ZHU L, et al. Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions [J]. Additive Manufacturing, 2022, 54: 102772. DOI: 10.1016/j.addma.2022.102772.
|
[6] |
YAO J, SUO T, ZHANG S Y, et al. Influence of heat-treatment on the dynamic behavior of 3D laser-deposited Ti-6Al-4V alloy [J]. Materials Science and Engineering: A, 2016, 677: 153–162. DOI: 10.1016/j.msea.2016.09.036.
|
[7] |
李小龙, 李鹏辉, 郭伟国, 等. 激光金属沉积GH4169在不同应变率下的剪切特性及破坏机理研究 [J]. 爆炸与冲击, 2020, 40(8): 083101. DOI: 10.11883/bzycj-2019-0254.LI X L, LI P H, GUO W G, et al. Shear characteristics and failure mechanism of laser metal deposition GH4169 at different strain rates [J]. Explosion and Shock Waves, 2020, 40(8): 083101. DOI: 10.11883/bzycj-2019-0254.
|
[8] |
ASALA G, ANDERSSON J, OJO O A. Improved dynamic impact behaviour of wire-arc additive manufactured ATI 718Plus® [J]. Materials Science and Engineering: A, 2018, 738: 111–124. DOI: 10.1016/j.msea.2018.09.079.
|
[9] |
DEHGAHI S, ALAGHMANDFARD R, TALLON J, et al. Microstructural evolution and high strain rate compressive behavior of as-built and heat-treated additively manufactured maraging steels [J]. Materials Science and Engineering: A, 2021, 815: 141183. DOI: 10.1016/j.msea.2021.141183.
|
[10] |
WEAVER J S, LIVESCU V, MARA N A. A comparison of adiabatic shear bands in wrought and additively manufactured 316L stainless steel using nanoindentation and electron backscatter diffraction [J]. Journal of Materials Science, 2020, 55(4): 1738–1752. DOI: 10.1007/s10853-019-03994-8.
|
[11] |
LI J N, GAO D, LU Y, et al. Mechanical properties and microstructure evolution of additive manufactured 316L stainless steel under dynamic loading [J]. Materials Science and Engineering: A, 2022, 855: 143896. DOI: 10.1016/j.msea.2022.143896.
|
[12] |
王晓光, 刘奋成, 方平, 等. CMT电弧增材制造316L不锈钢成形精度与组织性能分析 [J]. 焊接学报, 2019, 40(5): 100–106. DOI: 10.12073/j.hjxb.2019400135.WANG X G, LIU F C, FANG P, et al. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process [J]. Transactions of the China Welding Institution, 2019, 40(5): 100–106. DOI: 10.12073/j.hjxb.2019400135.
|
[13] |
李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywkxb.2017.03.005.LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardness [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywkxb.2017.03.005.
|
[14] |
LI J G, LI Y L, SUO T, et al. Numerical simulations of adiabatic shear localization in textured FCC metal based on crystal plasticity finite element method [J]. Materials Science and Engineering: A, 2018, 737: 348–363. DOI: 10.1016/j.msea.2018.08.105.
|
[15] |
LI S Y, BEYERLEIN I J, BOURKE M A M. Texture formation during equal channel angular extrusion of FCC and BCC materials: comparison with simple shear [J]. Materials Science and Engineering: A, 2005, 394(1/2): 66–77. DOI: 10.1016/j.msea.2004.11.032.
|
[16] |
XUE Q, GRAY Ⅲ G T. Development of adiabatic shear bands in annealed 316L stainless steel: part Ⅰ. correlation between evolving microstructure and mechanical behavior [J]. Metallurgical and Materials Transactions A, 2006, 37(8): 2435–2446. DOI: 10.1007/BF02586217.
|
[17] |
XUE Q, GRAY Ⅲ G T. Development of adiabatic shear bands in annealed 316L stainless steel: part Ⅱ. TEM studies of the evolution of microstructure during deformation localization [J]. Metallurgical and Materials Transactions A, 2006, 37(8): 2447–2458. DOI: 10.1007/BF02586218.
|
[18] |
CHEN J, WEI H Y, ZHANG X F, et al. Flow behavior and microstructure evolution during dynamic deformation of 316 L stainless steel fabricated by wire and arc additive manufacturing [J]. Materials & Design, 2021, 198: 109325. DOI: 10.1016/j.matdes.2020.109325.
|
[19] |
MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. DOI: 10.1016/S0921-5093(01)01160-1.
|