Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

电弧增材制造不锈钢动态加载绝热剪切带内组织研究

陈杰 王克鸿 孔见 彭勇 刘闯 董可伟 汪奇鹏 张先锋

张兴华, 唐志平, 徐薇薇, 唐小军, 郑航. FeMnNi合金的冲击相变和层裂特性的实验研究[J]. 爆炸与冲击, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06
引用本文: 陈杰, 王克鸿, 孔见, 彭勇, 刘闯, 董可伟, 汪奇鹏, 张先锋. 电弧增材制造不锈钢动态加载绝热剪切带内组织研究[J]. 爆炸与冲击, 2023, 43(7): 073102. doi: 10.11883/bzycj-2022-0493
ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06
Citation: CHEN Jie, WANG Kehong, KONG Jian, PENG Yong, LIU Chuang, DONG Kewei, WANG Qipeng, ZHANG Xianfeng. Sub-texture in adiabatic shear bands from arc additively manufactured stainless steel under dynamic loads[J]. Explosion And Shock Waves, 2023, 43(7): 073102. doi: 10.11883/bzycj-2022-0493

电弧增材制造不锈钢动态加载绝热剪切带内组织研究

doi: 10.11883/bzycj-2022-0493
基金项目: 国家自然科学基金(61727802)
详细信息
    作者简介:

    陈 杰(1986- ),男,博士,助理研究员,chenjie@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,教授,博士生导师,lynx@njust.edu.cn

  • 中图分类号: O347.1; TG142.1

Sub-texture in adiabatic shear bands from arc additively manufactured stainless steel under dynamic loads

  • 摘要: 绝热剪切失效是增材制造金属材料在高应变率载荷下的重要失效方式。使用电火花从冷金属过渡电弧增材技术制备的316L不锈钢单壁上沿着制造方向和扫描方向割出动态加载圆柱试样(尺寸为4 mm×4 mm)。采用分离式霍普金森杆对增材制造316L试样在应变率4000到6000 s−1下加载至绝热剪切状态,研究了其动态剪切变形行为特别是剪切带内微观组织特征结构。不同应变率动态加载下,电弧增材制造316L不锈钢的动态应力首先由于应变硬化而增大,随后绝热剪切热软化与应变硬化的平衡导致了动态变形最后阶段的应力平台效应。绝热剪切带中亚晶经历了动态再结晶过程,具有与基体完全不同的等轴晶形貌,晶粒尺寸大约在200~300 nm。动态剪切复杂热力过程导致剪切带内的亚晶形成了双重织构,既有与基体一致的沿着压缩方向的<110>丝织构,也有与宏观剪切方向相关的晶体学织构,即(111)沿着宏观剪切面,<112>沿着宏观剪切方向。不同剪切带的等轴亚晶都有大量残余Σ3 60°晶界,同时存在与基体相同的孪生织构,可以证明孪生再结晶是绝热剪切带内亚晶主要的动态再结晶机制。宏观绝热剪切带发展路径沿着压缩面35°的对称路径发展,这除了符合动态加载下试样中最大应变和热场分布的外加物理条件,还符合剪切面(111)与基体(110)面交角为35.2°的晶体学条件。此外,基体中存在大量微观局部变形带来承载应变,微观局部变形带内亚晶也具有与基体孪晶组织不同的位向和形貌。
  • 图  1  电弧增材制造单壁316L圆柱试样取样示意图

    Figure  1.  Schematic diagram of how cylindrical arc additively manufactured 316L samples for impact tests were extracted

    图  2  电弧增材制造316L试样动态压缩前后的宏观照片以及绝热剪切带EBSD扫描位置

    Figure  2.  Macrostructure of untested and incompletely fractured arc additively manufactured 316L samples as well as insert indicating facet of EBSD scanning for ASBs

    图  3  电弧增材制造316L单壁不同视角EBSD反极图

    Figure  3.  EBSD IPF maps of as-built arc additively manufactured 316L plate from different planes

    图  4  动态加载记录的波形图和换算的应力-应变曲线

    Figure  4.  Recorded wave and corresponding calculated stress-strain curves from dynamic compressions

    图  5  沿着扫描方向的试样1在应变率4700 s−1的动态加载后初始绝热剪切带发展形貌

    Figure  5.  Initial ASB morphologies from 316L sample 1 in scanning direction under dynamic compression at 4700 s−1

    图  6  沿着沉积方向试样2在应变率5700 s−1的动态加载后绝热剪切带整体及不同位置形貌

    Figure  6.  Typical morphology of ASBs from 316L sample 2 in building direction under dynamic compression at 5700 s−1

    图  7  不同绝热剪切带微区晶粒EBSD形貌以及相应空间位向图

    Figure  7.  Multiscale EBSD IPF maps of different ASBs and corresponding calculated ODF maps from sub-grain orientation data

    图  8  微观局部变形带D区域EBSD、TKD反极图和相应的TEM形貌和衍射图

    Figure  8.  EBSD IPF, TKD IPF and TEM maps from strain localization of area D

    图  9  微观局部变形带E区域EBSD反极图以及TEM形貌和衍射图

    Figure  9.  EBSD IPF and TEM maps from strain localization of E area

    图  10  不同绝热剪切带及应变局域带亚晶晶体学特征方向

    Figure  10.  Grain orientation in different areas from samples undergo adiabatic shearing

    图  11  不同剪切带和微观局部变形带中亚晶晶界

    Figure  11.  Grain boundary misorientation of sub-grains in different ASBs and strain localization

  • [1] SRIVASTAVA M, RATHEE S, TIWARI A, et al. Wire arc additive manufacturing of metals: a review on processes, materials and their behaviour [J]. Materials Chemistry and Physics, 2023, 294: 126988. DOI: 10.1016/j.matchemphys.2022.126988.
    [2] 丁东红, 黄荣, 张显程, 等. 电弧增材制造研究进展: 多源信息传感 [J]. 焊接技术, 2022, 51(10): 1–20, 113. DOI: 10.13846/j.cnki.cn12-1070/tg.2022.10.024.

    DING D H, HUANG R, ZHANG X C, et al. Research progress of wire arc additive manufacturing: multi-source information sensing [J]. Welding Technology, 2022, 51(10): 1–20, 113. DOI: 10.13846/j.cnki.cn12-1070/tg.2022.10.024.
    [3] YAN N, LI Z Z, XU Y B, et al. Shear localization in metallic materials at high strain rates [J]. Progress in Materials Science, 2021, 119: 100755. DOI: 10.1016/j.pmatsci.2020.100755.
    [4] WANG T, ZHU L, WANG C H, et al. Microstructure evolution and dynamic mechanical properties of laser additive manufacturing Ti-6Al-4V under high strain rate [J]. Journal of Beijing Institute of Technology, 2020, 29(4): 568–580. DOI: 10.15918/j.jbit1004-0579.20064.
    [5] LIU Y, MENG J H, ZHU L, et al. Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions [J]. Additive Manufacturing, 2022, 54: 102772. DOI: 10.1016/j.addma.2022.102772.
    [6] YAO J, SUO T, ZHANG S Y, et al. Influence of heat-treatment on the dynamic behavior of 3D laser-deposited Ti-6Al-4V alloy [J]. Materials Science and Engineering: A, 2016, 677: 153–162. DOI: 10.1016/j.msea.2016.09.036.
    [7] 李小龙, 李鹏辉, 郭伟国, 等. 激光金属沉积GH4169在不同应变率下的剪切特性及破坏机理研究 [J]. 爆炸与冲击, 2020, 40(8): 083101. DOI: 10.11883/bzycj-2019-0254.

    LI X L, LI P H, GUO W G, et al. Shear characteristics and failure mechanism of laser metal deposition GH4169 at different strain rates [J]. Explosion and Shock Waves, 2020, 40(8): 083101. DOI: 10.11883/bzycj-2019-0254.
    [8] ASALA G, ANDERSSON J, OJO O A. Improved dynamic impact behaviour of wire-arc additive manufactured ATI 718Plus® [J]. Materials Science and Engineering: A, 2018, 738: 111–124. DOI: 10.1016/j.msea.2018.09.079.
    [9] DEHGAHI S, ALAGHMANDFARD R, TALLON J, et al. Microstructural evolution and high strain rate compressive behavior of as-built and heat-treated additively manufactured maraging steels [J]. Materials Science and Engineering: A, 2021, 815: 141183. DOI: 10.1016/j.msea.2021.141183.
    [10] WEAVER J S, LIVESCU V, MARA N A. A comparison of adiabatic shear bands in wrought and additively manufactured 316L stainless steel using nanoindentation and electron backscatter diffraction [J]. Journal of Materials Science, 2020, 55(4): 1738–1752. DOI: 10.1007/s10853-019-03994-8.
    [11] LI J N, GAO D, LU Y, et al. Mechanical properties and microstructure evolution of additive manufactured 316L stainless steel under dynamic loading [J]. Materials Science and Engineering: A, 2022, 855: 143896. DOI: 10.1016/j.msea.2022.143896.
    [12] 王晓光, 刘奋成, 方平, 等. CMT电弧增材制造316L不锈钢成形精度与组织性能分析 [J]. 焊接学报, 2019, 40(5): 100–106. DOI: 10.12073/j.hjxb.2019400135.

    WANG X G, LIU F C, FANG P, et al. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process [J]. Transactions of the China Welding Institution, 2019, 40(5): 100–106. DOI: 10.12073/j.hjxb.2019400135.
    [13] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywkxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardness [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywkxb.2017.03.005.
    [14] LI J G, LI Y L, SUO T, et al. Numerical simulations of adiabatic shear localization in textured FCC metal based on crystal plasticity finite element method [J]. Materials Science and Engineering: A, 2018, 737: 348–363. DOI: 10.1016/j.msea.2018.08.105.
    [15] LI S Y, BEYERLEIN I J, BOURKE M A M. Texture formation during equal channel angular extrusion of FCC and BCC materials: comparison with simple shear [J]. Materials Science and Engineering: A, 2005, 394(1/2): 66–77. DOI: 10.1016/j.msea.2004.11.032.
    [16] XUE Q, GRAY Ⅲ G T. Development of adiabatic shear bands in annealed 316L stainless steel: part Ⅰ. correlation between evolving microstructure and mechanical behavior [J]. Metallurgical and Materials Transactions A, 2006, 37(8): 2435–2446. DOI: 10.1007/BF02586217.
    [17] XUE Q, GRAY Ⅲ G T. Development of adiabatic shear bands in annealed 316L stainless steel: part Ⅱ. TEM studies of the evolution of microstructure during deformation localization [J]. Metallurgical and Materials Transactions A, 2006, 37(8): 2447–2458. DOI: 10.1007/BF02586218.
    [18] CHEN J, WEI H Y, ZHANG X F, et al. Flow behavior and microstructure evolution during dynamic deformation of 316 L stainless steel fabricated by wire and arc additive manufacturing [J]. Materials & Design, 2021, 198: 109325. DOI: 10.1016/j.matdes.2020.109325.
    [19] MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. DOI: 10.1016/S0921-5093(01)01160-1.
  • 加载中
推荐阅读
退火态增材制造alsi10mg合金在极端条件下的力学行为
张权 等, 爆炸与冲击, 2025
高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理
惠煜中 等, 爆炸与冲击, 2024
恒定高应变率拉伸条件下泡沫金属力学性能
张晓阳 等, 爆炸与冲击, 2024
考虑晶体取向的al0.3cocrfeni高熵合金动态力学性能研究
陈嘉琳 等, 爆炸与冲击, 2024
镍基单晶高温合金dd5磨削成屑机理研究
于贵华 等, 金刚石与磨料磨具工程, 2023
Al基纳米粉末冲击加载微观组织演变机制
安豪 等, 高压物理学报, 2025
选区激光熔化feconicr系高熵合金机械性能实验研究
温雪龙 等, 东北大学学报(自然科学版), 2025
The synthesis and key features of 3d carbon nitrides (c3n4) used for co2 photoreduction
Anus, Ali et al., CHEMICAL ENGINEERING JOURNAL, 2024
Fatigue fracture mechanism and life prediction of nickel-based single crystal superalloy with film cooling holes considering initial manufacturing damage
INTERNATIONAL JOURNAL OF FATIGUE
Analysis of the enhancement effect of uhmwpe backplate thickness on the penetration resistance of aluminum composite panels
YANG Kexu et al., EXPLOSION AND SHOCK WAVES, 2024
Powered by
图(11)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  100
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-05
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回