鱼雷垂直入水瞬间结构响应的数值模拟

贺征 高紫晴 顾璇 高子舒

贺征, 高紫晴, 顾璇, 高子舒. 鱼雷垂直入水瞬间结构响应的数值模拟[J]. 爆炸与冲击, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506
引用本文: 贺征, 高紫晴, 顾璇, 高子舒. 鱼雷垂直入水瞬间结构响应的数值模拟[J]. 爆炸与冲击, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506
HE Zheng, GAO Ziqing, GU Xuan, GAO Zishu. Numerical simulation on the structural response of a torpedo at the moment of vertical water entry[J]. Explosion And Shock Waves, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506
Citation: HE Zheng, GAO Ziqing, GU Xuan, GAO Zishu. Numerical simulation on the structural response of a torpedo at the moment of vertical water entry[J]. Explosion And Shock Waves, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506

鱼雷垂直入水瞬间结构响应的数值模拟

doi: 10.11883/bzycj-2022-0506
详细信息
    作者简介:

    贺 征(1978- ),男,博士,教授,hezheng@hrbeu.edu.cn

    通讯作者:

    高紫晴(1998- ),女,硕士研究生,gaoziqing1998@163.com

  • 中图分类号: O344.3

Numerical simulation on the structural response of a torpedo at the moment of vertical water entry

  • 摘要: 垂直入水的鱼雷在短时间内弹道稳定,基于此,针对跨介质鱼雷撞水冲击造成的结构问题展开研究,探究了各舱段壳体和连接部位的轴向运动规律及受力特性,利用任意拉格朗日-欧拉算法及罚函数法建立了流固耦合数值模型,并对其合理性和网格无关性进行了验证。对采用不同连接方式的4种头型鱼雷分别模拟,并与整体式鱼雷进行了对比。结果表明:鱼雷撞水后加速度瞬间升高,头型越尖,所受的冲击越小;由于应力以波的形式向后传递,因此各舱段会依照距离头部的远近依次响应,且强度逐渐减弱;相邻壳体的相对静止状态被打破,运动过程中会不断拉压连接件,使之形状和位置都发生较大变化;壳体相互远离时,雷体外缘产生缝隙,此时连接件应力也达到最大,对连接的稳固性不利。因此,建议工程中增加密封圈或其他固定装置等,以加强对连接部位的保护。
  • 图  1  连接件结构

    Figure  1.  Geometries of the connectors

    图  2  弧形头结构尺寸

    Figure  2.  Dimensions of the head shape

    图  3  鱼雷结构

    Figure  3.  Geometry models of torpedoes

    图  4  弹体装配情况

    Figure  4.  Structural assembly of a torpedo

    图  5  计算边界条件

    Figure  5.  Computational domain and boundary conditions

    图  6  实验装置示意图

    Figure  6.  Schematic diagram of the experimental configuration

    图  7  入水过程空泡形态

    Figure  7.  Cavity shapes during water entry

    图  8  鱼雷入水过程

    Figure  8.  Water-entry processes of the torpedoes

    图  9  鱼雷4壳体沿x方向的加速度

    Figure  9.  Shell acceleration in the x direction of torpedo 4

    图  10  壳体x方向加速度随时间的变化

    Figure  10.  Time evolution of acceleration in the x direction for shells

    图  11  鱼雷4不同时刻的应力云图

    Figure  11.  Time evolution of stress contour for torpedo 4

    图  12  鱼雷4最大应力随时间的变化曲线

    Figure  12.  Time evolution of maximum effective stress for torpedo 4

    图  13  在最大应力时连接件的变形情况

    Figure  13.  Deformation of the connectors at the maximum stress

    图  14  接触面受力关系

    Figure  14.  Forces on contact surfaces

    图  15  鱼雷4连接接触面上的力随时间的变化

    Figure  15.  Time evolution of contact surface forces of torpedo 4

    表  1  铝合金材料参数

    Table  1.   Material parameters of aluminum alloy

    材料密度/(kg·m−3弹性模量/GPa泊松比屈服极限/MPa
    7075铝合金2 810710.33455
    LC4铝合金2 820720.30420
    下载: 导出CSV

    表  2  网格无关性验证结果

    Table  2.   Results of mesh independence verification

    网格尺寸/mm网格数amax/(m·s−2)pmax/MPapmax的相对误差/%
    固体网格6504 20171 10862.5829.5
    4787 65072 21462.7229.3
    21 433 00073 23162.9929.1
    14 301 46172 82062.5729.5
    流体网格1223 80084 12457.8831.1
    10450 00073 23162.9929.1
    8750 00073 91875.0915.4
    61 632 00073 12886.033.1
    52 660 00072 66586.043.1
    下载: 导出CSV
  • [1] 严忠汉. 试论鱼雷入水问题 [J]. 中国造船, 2002, 43(3): 88–93. DOI: 10.3969/j.issn.1000-4882.2002.03.013.

    YAN Z H. A brief neview of water-entry problems for torpedo [J]. Shipbuilding of China, 2002, 43(3): 88–93. DOI: 10.3969/j.issn.1000-4882.2002.03.013.
    [2] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [3] 王军. 鱼雷入水冲击动力学仿真研究 [D]. 昆明: 昆明理工大学, 2010: 1–2.

    WANG J. The impact dynamics simulation study of torpedo water-entry [D]. Kunming, Yunnan, China: Kunming University of Science and Technology, 2010: 1–2.
    [4] WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1900, 194: 175–199. DOI: 10.1098/rsta.1900.0016.
    [5] VON KARMAN T. The impact of seaplane floats during landing: NACA technical notes 32 [R]. USA: National Advisory Committee for Aero-nautics, 1929. DOI: 10.1115/1.4023571.
    [6] WAGNER H. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. DOI: 10.1002/zamm.19320120402.
    [7] EROSHIN V A, ROMANENKOV N I, SEREBRYAKOV I V, et al. Hydrodynamic forces produced when blunt bodies strike the surface of a compressible fluid [J]. Fluid Dynamics, 1980, 15(6): 829–835. DOI: 10.1007/BF01096631.
    [8] HOWISON S D, OCKENDON J R, WILSON S K. Incompressible water-entry problems at small deadrise angles [J]. Journal of Fluid Mechanics, 1991, 222(1): 215–230. DOI: 10.1017/S0022112091001076.
    [9] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [10] 郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
    [11] 黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.

    HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
    [12] 侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究 [J]. 兵工学报, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.

    HOU Y, HUANG Z G, GUO Z Q, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile [J]. Acta Armamentarii, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.
    [13] OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics, 2006, 213(2): 803–822. DOI: 10.1016/j.jcp.2005.09.004.
    [14] IRANMANESH A, PASSANDIDEH-FARD M. A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique [J]. Ocean Engineering, 2017, 130: 557–566. DOI: 10.1016/j.oceaneng.2016.12.018.
    [15] CHAUDHRY A Z, PAN G, SHI Y. Numerical evaluation of the hydrodynamic impact characteristics of the air launched AUV upon water entry [J]. Modern Physics Letters B, 2020, 34(14): 2050149. DOI: 10.1142/S0217984920501493.
    [16] 黄志刚, 孙铁志, 杨碧野, 等. 平头锥型回转体高速入水结构强度数值分析 [J]. 爆炸与冲击, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.

    HUANG Z G, SUN T Z, YANG B Y, et al. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry [J]. Explosion and Shock Waves, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
    [17] 孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.

    SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
    [18] 汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.

    WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
    [19] 汪振, 吴茂林, 孙玉松. 多介质ALE方法流固耦合影响因素及参数分析 [J]. 计算机仿真, 2021, 38(2): 18–23. DOI: 10.3969/j.issn.1006-9348.2021.02.006.

    WANG Z, WU M L, SUN Y S. Influence factors and parameters of fluid-solid coupling in multi-medium ALE method [J]. Computer Simulation, 2021, 38(2): 18–23. DOI: 10.3969/j.issn.1006-9348.2021.02.006.
    [20] SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760–102778. DOI: 10.1016/j.jfluidstructs.2019.102760.
    [21] 贾鹏. 运动体高速入水冲击载荷数值模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018: 13–82.

    JIA P. Numerical simulation research on high-speed water entry impact [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2018: 13–82.
    [22] 李刚. 弹体低速入水过程流固耦合特性数值研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020: 60–66.

    LI G. Numerical study of fluid-solid coupling characteristics of a projectile body during low-speed water entry [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2020: 60–66.
    [23] 康宝臣, 冯丽娜, 吴琪. 水下航行器舱段连接结构设计 [J]. 机械工程与自动化, 2019(3): 129–130. DOI: 10.3969/j.issn.1672-6413.2019.03.053.

    KANG B C, FENG L N, WU Q. Design of connecting structure for cabins of underwater vehicle [J]. Mechanical Engineering and Automation, 2019(3): 129–130. DOI: 10.3969/j.issn.1672-6413.2019.03.053.
    [24] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值计算研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.

    WEI H P, SHI C B, SUN Z T, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
    [25] SHI Y, PAN G, YAN G X, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry [J]. Applied Ocean Research, 2019, 89: 44–58. DOI: 10.1016/j.apor.2019.05.012.
    [26] 关文信, 陆庆. 楔环连接方式的水下航行器壳体动态特性分析 [J]. 机械设计, 2021, 38(S1): 120–125. DOI: 10.13841/j.cnki.jxsj.2021.s1.027.

    GUAN W X, LU Q. Dynamic characteristics analysis of underwater vehicle shell with wedge-ring [J]. Journal of Machine Design, 2021, 38(S1): 120–125. DOI: 10.13841/j.cnki.jxsj.2021.s1.027.
    [27] 黄鹏, 莫军, 徐兵. 楔环连接结构参数化有限元优化设计 [J]. 机械强度, 2005(2): 191–195. DOI: 10.3321/j.issn:1001-9669.2005.02.011.

    HUANG P, MO J, XU B. FEM-based parametric optomozation design of wedge-ring joint structure [J]. Journal of Machinal Strength, 2005(2): 191–195. DOI: 10.3321/j.issn:1001-9669.2005.02.011.
    [28] 宋保维, 毛昭勇, 潘光, 等. 鱼雷卡箍联接结构模糊可靠性优化设计 [J]. 火力与指挥控制, 2007(11): 121–124. DOI: 10.3969/j.issn.1002-0640.2007.11.035.

    SONG B W, MAO Z Y, PAN G, et al. The fuzzy reliability optimization design of clamp connection in torpedo [J]. Fire Control and Command Control, 2007(11): 121–124. DOI: 10.3969/j.issn.1002-0640.2007.11.035.
    [29] 徐思博. 回转体高速入水瞬态流固耦合载荷与弹道特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 26–29.

    XU S B. Study on fluid-structure interactional load and trajectory characteristics of high-speed water entry of projectile [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2019: 26–29.
    [30] 张宇文, 宋保维, 王鹏, 等. 鱼雷总体设计理论与方法 [M]. 西安: 西北工业大学出版社, 2015: 203–205.
    [31] 邹秀亮. Al2O3np/7075铝基复合材料的热处理及触变压缩变形行为研究 [D]. 南昌: 南昌大学, 2017: 1–12.

    ZOU X L. Study on heat treatment and thixotropic compression deformation behavior of Al2O3np/7075 aluminum matrix composites [D]. Nanchang, Jiangxi, China: Nanchang University, 2017: 1–12.
    [32] 黄鹏, 尹益辉, 莫军. 楔环连接结构两种有限元优化设计方案研究 [J]. 机械工程学报, 2006, 42(8): 205–209. DOI: 10.3321/j.issn:0577-6686.2006.08.036.

    HUANG P, YIN Y H, MO J. Two optimization designs research of wedge-ring joint structure based on FEM [J]. Chinese Journal of Mechanical Engineering, 2006, 42(8): 205–209. DOI: 10.3321/j.issn:0577-6686.2006.08.036.
    [33] 辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册 [M]. 2版. 北京: 机械工业出版社, 2022: 276–282.
    [34] CHAUDHRY A Z, SHI Y, PAN G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects [J]. Applied Ocean Research, 2021, 115: 102849–102871. DOI: 10.1016/j.apor.2021.102849.
    [35] 潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.

    PAN G, YANG K. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  83
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-12
  • 修回日期:  2023-04-08
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回