动荷载下岩石裂纹动态扩展行为实验研究综述

高维廷 朱哲明 朱伟 邹明

高维廷, 朱哲明, 朱伟, 邹明. 动荷载下岩石裂纹动态扩展行为实验研究综述[J]. 爆炸与冲击, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526
引用本文: 高维廷, 朱哲明, 朱伟, 邹明. 动荷载下岩石裂纹动态扩展行为实验研究综述[J]. 爆炸与冲击, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526
GAO Weiting, ZHU Zheming, ZHU Wei, ZOU Ming. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review[J]. Explosion And Shock Waves, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526
Citation: GAO Weiting, ZHU Zheming, ZHU Wei, ZOU Ming. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review[J]. Explosion And Shock Waves, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526

动荷载下岩石裂纹动态扩展行为实验研究综述

doi: 10.11883/bzycj-2022-0526
基金项目: 国家自然科学基金(U19A2098, 12272247)
详细信息
    作者简介:

    高维廷(1997- ),男,博士研究生,gaoweitingscu@126.com

    通讯作者:

    朱哲明(1965- ),男,博士,教授,博士生导师,zhemingzhu@hotmail.com

  • 中图分类号: O384

Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review

  • 摘要: 岩石的动态裂纹扩展特性在岩石力学和岩石工程研究中具有重要意义。动荷载下岩石中裂纹的扩展行为是瞬间发生的,这对实验中测试和加载技术具有很大的挑战性。为综述动荷载下岩石材料裂纹扩展研究取得的丰硕成果,总结了岩石动态裂纹扩展测试技术、实验设备和实验方法等方面的最新进展。首先,讨论了动态岩石裂纹扩展测试的各种测量技术(X射线计算机断层扫描技术、焦散线法、数字图像相关法、裂纹扩展计、导电碳膜测试方法、声发射);然后,以应变率为主线,从低到高依次总结了中低应变率、高应变率和超高应变率下岩石内裂纹动态扩展行为研究,系统讨论了落锤冲击装置、霍普金森压杆、爆炸实验中对裂纹扩展测试的实验方法和动态裂纹扩展特性,总结了不同应变率条件下岩石裂纹的起裂、扩展、止裂及动态断裂韧度等的演变规律。
  • 图  1  岩石工程中影响裂纹扩展的各种因素

    Figure  1.  Influencing factors in rock engineering suffering from various dynamic loads

    图  2  CT扫描技术在岩石动态断裂研究中的应用[33-35]

    Figure  2.  Application of CT scanning technique in rock dynamic fracture study[33-35]

    图  3  数字图像相关原理[46]

    Figure  3.  The digital image correlation principle[46]

    图  4  反射式焦散线法原理示意图[57]

    Figure  4.  Schematic diagram of the reflection caustic method[57]

    图  5  石灰岩试样断裂过程的热成像图像[60]

    Figure  5.  Thermographic images of the fracture process in a limestone specimen[60]

    图  6  导电碳膜对岩石材料裂纹扩展速度的测试原理[62]

    Figure  6.  Test schematic diagram of crack propagation speed in rock material by using a conductive carbon film[62]

    图  7  裂纹扩展计测试系统及其测试结果[63-64]

    Figure  7.  The crack propagation gauge (CPG) test system and its test result[63-64]

    图  8  SHPB-AE系统原理图[76-77]

    Figure  8.  Schematic diagram of the SHPB-AE system[76-77]

    图  9  以应变率划分的岩石动力学问题及对应的实验方法[78]

    Figure  9.  Rock dynamics problems divided by strain rate and the corresponding experimental methods[78]

    图  10  传统实验室落锤装置[79]

    Figure  10.  A traditional laboratory drop-hammer device[79]

    图  11  落锤冲击加载装置[64]

    Figure  11.  The drop-hammer impact loading device[64]

    图  12  落锤冲击下的典型波形[85]

    Figure  12.  Typical waveforms under a drop-hammer impact[85]

    图  13  SCT试件示意图及加载形式[85]

    Figure  13.  Schematic diagram of the SCT specimen and the loading mode[85]

    图  14  不同形状边界的裂纹止裂技术[90-91]

    Figure  14.  Crack arrest techniques for different shape boundaries[90-91]

    图  15  裂隙尖端动态应力强度因子随时间变化[92]

    Figure  15.  Dynamic stress intensity factors at the tip of the fracture over time[92]

    图  16  落锤冲击实验装置及侧向加压设备[94]

    Figure  16.  A drop-hammer impact experimental device and lateral pressure equipment[94]

    图  17  传统分离式霍普金森压杆示意图

    Figure  17.  Schematic diagram of the traditional split Hopkinson pressure bar

    图  18  SCSC试件构型示意图[107]

    Figure  18.  Schematic configuration of the SCSC specimen[107]

    图  19  不同节理倾角页岩试件在冲击作用下的裂纹扩展规律[120]

    Figure  19.  Crack propagation law of shale specimens with different joint inclination angles under impact[120]

    图  20  岩石-砂浆界面在冲击作用下的破坏规律[109,122]

    Figure  20.  Failure law of rock-mortar interface under impact[109,122]

    图  21  实验室岩石爆破加载装置 [23,126,128]

    Figure  21.  Laboratory rock blasting loading devices[23,126,128]

    图  22  爆炸应力波与裂纹相互作用的光弹性实验结果[138]

    Figure  22.  Photoelasticity experimental results during the blast wave-crack interaction[138]

    图  23  爆炸应力波下岩石动态断裂参数的2种测试构型[131,140]

    Figure  23.  Two test configurations of rock dynamic fracture parameters under explosive stress waves[131,140]

    图  24  孔洞对爆生裂纹扩展行为的影响[132]

    Figure  24.  Effect of holes on propagation behaviors of burst cracks[132]

    表  1  动荷载下岩石裂纹扩展测试技术总结

    Table  1.   Summary of techniques for testing rock crack growth under dynamic load

    测试方法适用范围优势不足发展趋势
    X射线
    计算机
    断层扫描
    技术(CT)
    (1)3D裂纹重建
    (2)孔隙率分析
    (3)矿物识别
    (1)可以对岩石试件的内部进行无损成像且可以进行多次测量,以此进行预选试样及事后评估
    (2)可以分析矿物相分布、孔隙空间和其他微观结构特征,提供岩石内部结构的定量信息
    (3)可以对岩石内部裂纹进行3D重建,是为数不多可以研究岩石内部裂纹扩展模式的方法
    (1)CT扫描更适用于对较完整的试样进行事后分析,不适用于动荷载下破碎程度很大的试件
    (2)对于动荷载下的实时测量较困难,原位测试技术有待成熟
    (3)X射线CT扫描分析成本高,实验过程具有放射性,需要专业实验员操作
    (1)实现高精度原位CT扫描技术,还原高应变率下岩石内部3D裂纹扩展
    (2)结合裂隙分布、矿物相和其他物理信息建立多尺度岩石信息模型
    数字图像相关法(DIC)(1)位移、应变测试
    (2) 裂纹扩展速度
    (3) 动态应力强度
    因子
    (1)可以提供高分辨率的变形和位移测量,相比传统测试方法(应变计)更加精细
    (2)非接触测量,不需要与试件进行物理接触,降低了在动荷载下损坏试件的风险,更加适用于岩石这种脆性材料
    (3)对岩石试样进行全场测量,提供全场变形和位移
    (4)计算自动化,在处理数据阶段全自动计算变形和位移等参量,提高结果的可靠性和可重复性
    (1)设置复杂,搭配动荷载装置设置DIC系统是极其复杂的,需要解决同步触发问题
    (2)最终得到的计算结果十分依赖于图像质量,而影响图像质量的因素很多,包括光照、相机采集频率和相机分辨率等
    (3)系统价格昂贵,目前在图像采集和数据计算所需设备和软件均需要很高的成本
    (1)目前应用最广泛的是岩石平整表面的DIC分析,未来可成熟测量曲面、不规则表面的3D-DIC分析
    (2)随着高速摄像技术和DIC数据处理的不断进步,测试范围、测量精度及计算速度会进一步提升
    焦散线实验方法(1)动态应力强度
    因子
    (2)裂纹扩展速度
    (1)焦散线实验是一种非接触无损伤的测试方法
    (2)根据焦散线理论可以计算获得裂纹扩展信息,包括动态应力强度因子、裂纹扩展速度、裂尖能量变化
    (1)用于焦散线实验测试的区域较小,测试样品大小收到限制
    (2)测试方法复杂,需要高水平的专业知识才能准确执行数据结果
    作为传统的光学测量方法,拥有极高的精度,随着高速摄像的不断发展,焦散线技术会集成其他测试方法进而获取更多的物理信息,例如光弹法等
    高速红外热成像法(1)断裂时刻
    (2)断裂热量分布
    (1)红外热成像技术可以实时观测断裂试样表面的温度场,确定裂纹扩展时裂尖端产生的热量(1)缺乏成熟的技术及理论支撑,使得这一技术仍然没有得到充分的利用
    (2)高速红外热成像相机采集频率无法应对动态测试
    (1)热成像技术在断裂力学领域潜力很大,需要对理论及设备进一步完善以获得更多断裂信息
    导电碳膜测试方法(1)裂纹扩展速度(1)具有良好的防水性、抗腐蚀性及热稳定性,可以对极端环境因素下的岩石裂纹扩展进行监测(1)为保障测试精度,需要对裂纹扩展路径进行预测,且仅适用于光滑岩石表面
    (2)目前应用范围较小,仅适用于特定复杂环境下的测试
    未来多物理场耦合作用下的岩石破坏是研究重点,可能获得广泛应用
    裂纹扩
    展计
    (1)裂纹扩展速度(1)测试系统搭建相对简单
    (2)相比传统电测应变计,可以连续测量裂纹扩展速度,测量间隔最低可达0.5 μs
    (1)为保障测试精度,需要对裂纹扩展路径进行预测,且仅适用于光滑岩石表面
    (2)测量范围有限
    随着高速摄像和DIC技术的不断发展,未来会逐步被取代
    声发射(1)裂纹扩展特征
    (2)损伤积累
    (1)敏感度高,可以监测到岩石试件的微小变化
    (2)在破坏过程中持续监测,提供详细的声发射数据
    (3)不会以任何方式改变岩石试样,可以对同一样品进行多次测试
    (1)虽然声发射提供了大量的数据,但是在没有对岩石破坏过程有深入探究的情况下很难正确分析结果
    (2)动荷载在声发射监测中会造成极大的扰动,难以获得准确的结果
    (3)在动态测试中,需要采集频率和敏感度更高的采集设备,同时需要具备信号处理技术
    (1)利用机器学习算法,采用先进的信号处理技术对原始信号进行分类,精准识别岩石破坏机制
    (2)集成其他测试技术,如DIC测试方法,提供更详细的岩石变形和破坏过程
    下载: 导出CSV

    表  2  分离式霍普金森压杆在岩石动态断裂测试中的主要发展

    Table  2.   Main developments of split Hopkinson pressure bars in rock dynamic fracture tests

    年份主要发展来源
    1966应力-应变关系文献[96]
    1968使用高速摄像机记录岩石动态断裂文献[97]
    1972在SHPB中加入静水围压装置,应力-应变关系,不同形状弹头文献[98]
    2001金属脉冲整形技术文献[99]
    2004动量陷阱技术文献 [100]
    2008SHPB杆径与加载率的关系文献[101]
    2008动-静应力耦合状态下岩石动力测试文献[102]
    2010人字形缺口巴西圆盘测试动态断裂韧度文献[103]
    2011人字形缺口半圆弯曲试样测试动态断裂韧度文献[104]
    2011三轴分离式霍普金森压杆系统文献[105]
    2012围压和温度的耦合作用文献[106]
    2015DIC技术应用于缺口半圆弯曲试样文献[45]
    2016Ⅰ/Ⅱ复合型裂纹扩展规律研究文献[107]
    20183D-DIC,全场应力应变监测文献[50]
    2018节理粗糙度对岩体应力波能量的影响文献[108]
    2020岩石-混凝土界面断裂性质文献[109]
    2020热-水-力耦合条件下深部砂岩的冲击动力学特性文献[110]
    2020含节理岩石中应力波传播特性文献[111]
    2021真三轴电磁霍普金森压杆文献[112]
    2022高温处理后Ⅰ型裂纹的扩展文献[113]
    2022冻融循环下砂岩的断裂特征文献[114]
    2022非均质的基质包裹体岩石的断裂性质文献[77]
    2022应力波在岩体中传播的非衰减特性文献[115]
    下载: 导出CSV
  • [1] AZIZNEJAD S, ESMAIELI K, HADJIGEORGIOU J, et al. Responses of jointed rock masses subjected to impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 624–634. DOI: 10.1016/j.jrmge.2017.12.006.
    [2] 李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.

    LI D Y, WAN Q R, ZHU Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods [J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.
    [3] 王思敬. 论岩石的地质本质性及其岩石力学演绎 [J]. 岩石力学与工程学报, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.

    WANG S J. Geological nature of rock and its deduction for rock mechanics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.
    [4] KONG R, FENG X T, ZHANG X W, et al. Study on crack initiation and damage stress in sandstone under true triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 117–123. DOI: 10.1016/j.ijrmms.2018.04.019.
    [5] NARA Y, KASHIWAYA K, NISHIDA Y, et al. Influence of surrounding environment on subcritical crack growth in marble [J]. Tectonophysics, 2017, 706/707: 116–128. DOI: 10.1016/j.tecto.2017.04.008.
    [6] SWANSON P L. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4137–4152. DOI: 10.1029/JB089iB06p04137.
    [7] 冯夏庭, 丁梧秀. 应力-水流-化学耦合下岩石破裂全过程的细观力学试验 [J]. 岩石力学与工程学报, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.

    FENG X T, DING W X. Meso-mechanical experiment of microfracturing process of rock under coupled mechanical-hydrological-chemical environment [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.
    [8] DONG Y Q, ZHU Z M, ZHOU L, et al. Study of mode Ⅰ crack dynamic propagation behaviour and rock dynamic fracture toughness by using SCT specimens [J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41(8): 1810–1822. DOI: 10.1111/ffe.12823.
    [9] YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
    [10] ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
    [11] 王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究 [J]. 岩石力学与工程学报, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.

    WANG F, WANG M, ZHU Z M, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.
    [12] LIANG Z Z, XING H, WANG S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw [J]. Computers and Geotechnics, 2012, 45: 19–33. DOI: 10.1016/j.compgeo.2012.04.011.
    [13] PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135–154. DOI: 10.1007/s00603-017-1316-x.
    [14] 李博, 朱强, 张丰收, 等. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.

    LI B, ZHU Q, ZHANG F S, et al. Study on crack propagation of heterogeneous rocks with double flaws based on grain based model [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.
    [15] KAWAMOTO T, AYDAN Ö. A review of numerical analysis of tunnels in discontinuous rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1377–1391. DOI: 10.1002/(SICI)1096-9853(199911)23:13<1377::AID-NAG932>3.0.CO;2-S.
    [16] BAŽANT Z P. Concrete fracture models: testing and practice [J]. Engineering Fracture Mechanics, 2002, 69(2): 165–205. DOI: 10.1016/S0013-7944(01)00084-4.
    [17] 岳中文, 陈彪, 杨仁树. 冲击载荷下岩石材料动态断裂韧性测试研究进展 [J]. 工程爆破, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.

    YUE Z W, CHEN B, YANG R S. Development and new achievements on rock dynamic fracture toughness testing under impact load [J]. Engineering Blasting, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.
    [18] 赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考 [J]. 地下空间与工程学报, 2016, 12(S2): 899–906.

    ZHAO H B, HU G L, LI W, et al. Research progress and thinking on the crack propagation law of pre-fractured rock [J]. Chinese Journal of Underground Space and Engineering, 2016, 12(S2): 899–906.
    [19] LIU Y, DAI F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1203–1230. DOI: 10.1016/j.jrmge.2021.03.012.
    [20] CERFONTAINE B, COLLIN F. Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 391–414. DOI: 10.1007/s00603-017-1337-5.
    [21] 夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展 [J]. 岩石力学与工程学报, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.

    XIA K W, WANG S, XU Y, et al. Advances in experimental studies for deep rock dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.
    [22] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [23] XU P, YANG R S, ZUO J J, et al. Research progress of the fundamental theory and technology of rock blasting [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 705–716. DOI: 10.1007/s12613-022-2464-x.
    [24] JU M H, LI X F, LI X, et al. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism [J]. Engineering Fracture Mechanics, 2022, 263: 108297. DOI: 10.1016/j.engfracmech.2022.108297.
    [25] CAO R H, CAO P, LIN H, et al. Crack initiation, propagation, and failure characteristics of jointed rock or rock-like specimens: a review [J]. Advances in Civil Engineering, 2019, 2019: 6975751. DOI: 10.1155/2019/6975751.
    [26] AHMED Z, WANG S H, HASHMI M Z, et al. Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review [J]. Arabian Journal of Geosciences, 2020, 13(16): 806. DOI: 10.1007/s12517-020-05755-3.
    [27] JENABIDEHKORDI A. Computational methods for fracture in rock: a review and recent advances [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 273–287. DOI: 10.1007/s11709-018-0459-5.
    [28] SARFARAZI V, HAERI H. A review of experimental and numerical investigations about crack propagation [J]. Computers and Concrete, 2016, 18(2): 235–266. DOI: 10.12989/cac.2016.18.2.235.
    [29] SHU Y, ZHU Z M, WANG M, et al. A modified JH2 model with improved strength model, damage evolution, and equation of state for rock under impact and blasting loads [J]. Mechanics of Materials, 2022, 174: 104454. DOI: 10.1016/j.mechmat.2022.104454.
    [30] SHU Y, ZHU Z M, WANG M, et al. A plastic damage constitutive model for rock-like material focusing on the hydrostatic pressure induced damage and the interaction of tensile and shear damages under impact and blast loads [J]. Computers and Geotechnics, 2022, 150: 104921. DOI: 10.1016/j.compgeo.2022.104921.
    [31] WAN D Y, WANG M, ZHU Z M, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture [J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097–1114. DOI: 10.1016/j.ijmst.2022.08.012.
    [32] 陈鹏宇. PFC2D模拟裂隙岩石裂纹扩展特征的研究现状 [J]. 工程地质学报, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.

    CHEN P Y. Research progress on PFC2D simulation of crack propagation characteristics of cracked rock [J]. Journal of Engineering Geology, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.
    [33] HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497.
    [34] LI J, WANG H C, ZHANG Q B. Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104979. DOI: 10.1016/j.ijrmms.2021.104979.
    [35] XING H Z, XIE F, WANG M Y, et al. Experimental investigation of fracture process zone of rock in dynamic mode Ⅰ fracturing and its effect on dynamic crack initiation toughness [J]. Engineering Fracture Mechanics, 2022, 275: 108828. DOI: 10.1016/j.engfracmech.2022.108828.
    [36] 张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究 [J]. 岩土力学, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.

    ZHANG Y B, XU Y D, LIU X X, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT [J]. Rock and Soil Mechanics, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.
    [37] GHAMGOSAR M, ERARSLAN N, WILLIAMS D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings [J]. Experimental Mechanics, 2017, 57(1): 97–113. DOI: 10.1007/s11340-016-0216-4.
    [38] WANG H, GAO Y T, ZHOU Y. Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103167. DOI: 10.1016/j.tafmec.2021.103167.
    [39] YANG S Q, YIN P F, HUANG Y H, et al. Strength, deformability and X-ray micro-CT observations of transversely isotropic composite rock under different confining pressures [J]. Engineering Fracture Mechanics, 2019, 214: 1–20. DOI: 10.1016/j.engfracmech.2019.04.030.
    [40] ZHONG Z, HUANG D, SONG Y X, et al. Three-dimensional cracking and coalescence of two spatial-deflection joints in rock-like specimens under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105196. DOI: 10.1016/j.ijrmms.2022.105196.
    [41] 王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.

    WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.
    [42] COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14(6): T06008. DOI: 10.1088/1748-0221/14/06/t06008.
    [43] PARAB N D, CLAUS B, HUDSPETH M C, et al. Experimental assessment of fracture of individual sand particles at different loading rates [J]. International Journal of Impact Engineering, 2014, 68: 8–14. DOI: 10.1016/j.ijimpeng.2014.01.003.
    [44] 杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析 [J]. 煤炭学报, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.

    YANG R S, LI W Y, LI Y L, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks [J]. Journal of China Coal Society, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.
    [45] GAO G, HUANG S, XIA K, et al. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2015, 55(1): 95–104. DOI: 10.1007/s11340-014-9863-5.
    [46] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [47] YAN Z L, DAI F, ZHU J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 5117–5139. DOI: 10.1007/s00603-021-02564-2.
    [48] ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
    [49] LIU W, HU C Y, LI L K, et al. Experimental study on dynamic notch fracture toughness of V-notched rock specimens under impact loads [J]. Engineering Fracture Mechanics, 2022, 259: 108109. DOI: 10.1016/j.engfracmech.2021.108109.
    [50] XING H Z, ZHANG Q B, RUAN D, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation [J]. International Journal of Impact Engineering, 2018, 113: 61–72. DOI: 10.1016/j.ijimpeng.2017.11.011.
    [51] GAO G, YAO W, XIA K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method [J]. Engineering Fracture Mechanics, 2015, 138: 146–155. DOI: 10.1016/j.engfracmech.2015.02.021.
    [52] JU M H, LI J C, YAO Q L, et al. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods [J]. Engineering Fracture Mechanics, 2019, 219: 106537. DOI: 10.1016/j.engfracmech.2019.106537.
    [53] 李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究 [J]. 岩石力学与工程学报, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.

    LI D Y, HU C W, ZHU Q Q. Experimental study on mechanical properties and failure laws of granite with an artificial flaw under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.
    [54] 王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石材料板动态压缩破坏试验研究 [J]. 岩石力学与工程学报, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.

    WANG Q Z, WU B B, LIU F, et al. Dynamic failure of manufactured similar rock plate containing a single fissure [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.
    [55] FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
    [56] RAVI-CHANDAR K. Chapter 8 : crack tip stress and deformation field measurement [M]//RAVI-CHANDAR K. Dynamic Fracture. Oxford: Elsevier, 2004: 107−139. DOI: 10.1016/B978-008044352-2/50008-9.
    [57] 励争, 苏先基, 傅缤. 水泥石动态断裂韧性的实验研究 [J]. 力学与实践, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.

    LI Z, SU X J, FU B. Determination of dynamic fracture toughness for cement block [J]. Mechanics and Engineering, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.
    [58] YANG R S, YUE Z W, SUN Z H, et al. Dynamic fracture behavior of rock under impact load using the caustics method [J]. Mining Science and Technology (China), 2009, 19(1): 79–83. DOI: 10.1016/S1674-5264(09)60015-6.
    [59] XU P, YANG R S, GUO Y, et al. Investigation of the interaction mechanism of two dynamic propagating cracks under blast loading [J]. Engineering Fracture Mechanics, 2022, 259: 108112. DOI: 10.1016/j.engfracmech.2021.108112.
    [60] SALAMI Y, DANO C, HICHER P Y. Infrared thermography of rock fracture [J]. Géotechnique Letters, 2017, 7(1): 36–40. DOI: 10.1680/jgele.16.00131.
    [61] LIU J, YANG F, XU X. Experimental on infrared radiation characteristics of high strength concrete during fracturing process [J]. Materials Research Innovations, 2015, 19(S5): 1107–1111. DOI: 10.1179/1432891714Z.0000000001258.
    [62] YI W, RAO Q H, LI Z, et al. A new measurement method of crack propagation rate for brittle rock under THMC coupling condition [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1728–1736. DOI: 10.1016/s1003-6326(19)65080-6.
    [63] DONG Y Q, ZHU Z M, REN L, et al. Crack dynamic propagation properties and arrest mechanism under impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1171–1184. DOI: 10.1016/j.jrmge.2020.01.008.
    [64] GAO W T, ZHU Z M, YING P, et al. Study on dynamic fracture properties of sandstone under the effect of high-temperature using large-scale sample [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103550. DOI: 10.1016/j.tafmec.2022.103550.
    [65] ZHOU L, MA L J, ZHU Z M, et al. Study of the coupling effect of elliptical cavities and cracks on tunnel stability under dynamic loads [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103502. DOI: 10.1016/j.tafmec.2022.103502.
    [66] YING P, ZHU Z M, WANG F, et al. The characteristics of dynamic fracture toughness and energy release rate of rock under impact [J]. Measurement, 2019, 147: 106884. DOI: 10.1016/j.measurement.2019.106884.
    [67] GAO W T, ZHU Z M, WANG M, et al. Influence of the interlaced holes on crack propagation behavior under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104178. DOI: 10.1016/j.ijimpeng.2022.104178.
    [68] LOCKNER D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883–899. DOI: 10.1016/0148-9062(93)90041-B.
    [69] YANG J, MU Z L, YANG S Q. Experimental study of acoustic emission multi-parameter information characterizing rock crack development [J]. Engineering Fracture Mechanics, 2020, 232: 107045. DOI: 10.1016/j.engfracmech.2020.107045.
    [70] WANG Y Y, DENG H C, DENG Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location [J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. DOI: 10.1016/j.petrol.2021.108420.
    [71] 张茹, 谢和平, 刘建锋, 等. 单轴多级加载岩石破坏声发射特性试验研究 [J]. 岩石力学与工程学报, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.

    ZHANG R, XIE H P, LIU J F, et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.
    [72] WANG Z H, LI Y, CAI W B, et al. Crack propagation process and acoustic emission characteristics of rock-like specimens with double parallel flaws under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 102983. DOI: 10.1016/j.tafmec.2021.102983.
    [73] SHI Z M, LI J T, WANG J. Effect of creep load on fatigue behavior and acoustic emission characteristics of sandstone containing pre-existing crack during fatigue loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103296. DOI: 10.1016/j.tafmec.2022.103296.
    [74] LIU L W, LI H B, LI X F. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 2034–2057. DOI: 10.1016/j.jrmge.2022.03.013.
    [75] ZHANG J Z, ZHOU X P. Fracture process zone (FPZ) in quasi-brittle materials: review and new insights from flawed granite subjected to uniaxial stress [J]. Engineering Fracture Mechanics, 2022, 274: 108795. DOI: 10.1016/j.engfracmech.2022.108795.
    [76] LI J, ZHAO J, WANG H C, et al. Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests [J]. Engineering Fracture Mechanics, 2021, 252: 107817. DOI: 10.1016/j.engfracmech.2021.107817.
    [77] WANG H C, ZHAO J, LI J, et al. Fracturing and AE characteristics of matrix-inclusion rock types under dynamic Brazilian testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 157: 105164. DOI: 10.1016/j.ijrmms.2022.105164.
    [78] CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [79] KHANDOUZI G, MEMARIAN H, KHOSRAVI M H. Development of a new experimental technique for dynamic fracture toughness measurement of rocks using drop weight test [J]. Joural of Mining and Environment, 2020, 11(3): 909–920. DOI: 10.22044/jme.2020.9818.1903.
    [80] SUN B, LIU S, ZENG S, et al. Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings [J]. Scientific Reports, 2021, 11(1): 13071. DOI: 10.1038/s41598-021-92277-x.
    [81] YANG S L, YUE H, CHEN X L, et al. Experimental study on damage evolution characteristics of coal samples under impact load under different surrounding pressures [J]. Lithosphere, 2022, 2022(Special 11): 1061545. DOI: 10.2113/2022/1061545.
    [82] FENG W H, TANG Y C, HE W M, et al. Mode Ⅰ dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar [J]. Journal of Building Engineering, 2022, 48: 103995. DOI: 10.1016/j.jobe.2022.103995.
    [83] REDDISH D J, STACE L R, VANICHKOBCHINDA P, et al. Numerical simulation of the dynamic impact breakage testing of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 167–176. DOI: 10.1016/j.ijrmms.2004.06.004.
    [84] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [85] DONG Y Q, ZHU Z M, YU L Y, et al. Investigation of dynamic fracture in VASCT samples under the effect of different loading modes [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103321. DOI: 10.1016/j.tafmec.2022.103321.
    [86] ZHOU L, ZHU Z M, QIU H, et al. Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 25–34. DOI: 10.1016/j.ijrmms.2018.10.011.
    [87] 周磊, 朱哲明, 董玉清, 等. 动态加载率对巷道内裂纹扩展速度及动态起裂韧度的影响 [J]. 振动与冲击, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Effect of dynamic loading rate on crack propagation velocity and dynamic fracture toughness in tunnels [J]. Journal of Vibration and Shock, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.
    [88] 董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.

    DONG Y Q, ZHU Z M, WANG M, et al. Mode Ⅰ crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
    [89] WANG X M, ZHU Z M, WANG M, et al. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts [J]. Engineering Fracture Mechanics, 2017, 181: 52–64. DOI: 10.1016/j.engfracmech.2017.06.024.
    [90] LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
    [91] LANG L, ZHU Z M, DENG S, et al. Study of crack arrest mechanism and dynamic behaviour using arc-bottom specimen under impacts [J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(9): 2040–2054. DOI: 10.1111/ffe.13282.
    [92] ZHOU Q, ZHU Z M, WANG X, et al. The effect of a pre-existing crack on a running crack in brittle material under dynamic loads [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(11): 2544–2557. DOI: 10.1111/ffe.13105.
    [93] YANG R S, XU P, YUE Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode Ⅰ running crack using digital dynamic caustics method [J]. Engineering Fracture Mechanics, 2016, 161: 63–75. DOI: 10.1016/j.engfracmech.2016.04.042.
    [94] 邓帅, 朱哲明, 王磊, 等. 原岩应力对裂纹动态断裂行为的影响规律研究 [J]. 岩石力学与工程学报, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.

    DENG S, ZHU Z M, WANG L, et al. Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.
    [95] XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: 10.1016/j.jrmge.2014.07.008.
    [96] HAUSER F E. Techniques for measuring stress-strain relations at high strain rates [J]. Experimental Mechanics, 1966, 6(8): 395–402. DOI: 10.1007/BF02326284.
    [97] PERKINS R D, GREEN S J. High speed photography in dynamic materials testing [J]. Review of Scientific Instruments, 1968, 39(8): 1209–1210. DOI: 10.1063/1.1683621.
    [98] CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-Hopkinson-bar tests on rock under confining pressure [J]. Experimental Mechanics, 1972, 12(11): 508–513. DOI: 10.1007/BF02320747.
    [99] FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: 10.1007/BF02323102.
    [100] SONG B, CHEN W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1177/0014485104048911.
    [101] LI X B, HONG L, YIN T B, et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure [J]. Journal of Central South University of Technology, 2008, 15(2): 218–223. DOI: 10.1007/s11771-008-0042-7.
    [102] LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [103] DAI F, CHEN R, IQBAL M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 606–613. DOI: 10.1016/j.ijrmms.2010.04.002.
    [104] DAI F, XIA K, ZHENG H, et al. Determination of dynamic rock mode-Ⅰ fracture parameters using cracked chevron notched semi-circular bend specimen [J]. Engineering Fracture Mechanics, 2011, 78(15): 2633–2644. DOI: 10.1016/j.engfracmech.2011.06.022.
    [105] CADONI E, ALBERTINI C. Modified Hopkinson bar technologies applied to the high strain rate rock tests [M]//ZHOU Y X, ZHAO J. Advances in Rock Dynamics and Applications. London: CRC Press, 2011: 79–104. DOI: 10.1201/b11077.
    [106] 方秦, 阮征, 翟超辰, 等. 围压与温度共同作用下盐岩的SHPB实验及数值分析 [J]. 岩石力学与工程学报, 2012, 31(9): 1756–1765.

    FANG Q, RUAN Z, ZHAI C C, et al. Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1756–1765.
    [107] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.

    WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
    [108] LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 403–420. DOI: 10.1007/s00603-018-1586-y.
    [109] QIU H, ZHU Z M, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete [J]. Engineering Fracture Mechanics, 2020, 228: 106798. DOI: 10.1016/j.engfracmech.2019.106798.
    [110] 邹宝平, 罗战友, 徐付军, 等. 热-水-力耦合条件下深部砂岩冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.

    ZOU B P, LUO Z Y, XU F J, et al. Experimental study on impact dynamic characteristics of deep sandstone under thermal-hydraulic-mechanical coupling conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.
    [111] HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
    [112] XIE H P, ZHU J B, ZHOU T, et al. Novel three-dimensional rock dynamic tests using the true triaxial electromagnetic Hopkinson bar system [J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 2079–2086. DOI: 10.1007/s00603-020-02344-4.
    [113] JIANG Y F, ZHOU L, ZHU Z M, et al. Research on dynamic cracking properties of cracked rock mass under the effect of thermal treatment [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103580. DOI: 10.1016/j.tafmec.2022.103580.
    [114] LIU X Y, LIU Y, DAI F, et al. Tensile mechanical behavior and fracture characteristics of sandstone exposed to freeze-thaw treatment and dynamic loading [J]. International Journal of Mechanical Sciences, 2022, 226: 107405. DOI: 10.1016/j.ijmecsci.2022.107405.
    [115] WANG L J, FAN L F, DU X L. Non-attenuation behavior of stress wave propagation through a rock mass [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 3807–3815. DOI: 10.1007/s00603-022-02843-6.
    [116] 王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.

    WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
    [117] WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [118] WANG M, WANG F, ZHU Z M, et al. Modelling of crack propagation in rocks under SHPB impacts using a damage method [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(8): 1699–1710. DOI: 10.1111/ffe.13012.
    [119] WANG F, WANG M. Effect of holes on dynamic crack propagation under impact loading [J]. Applied Sciences, 2020, 10(3): 1122. DOI: 10.3390/app10031122.
    [120] 王兴渝, 朱哲明, 邱豪, 等. 冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究 [J]. 岩石力学与工程学报, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.

    WANG X Y, ZHU Z M, QIU H, et al. Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.
    [121] WANG X Y, ZHU Z M, ZHOU L, et al. Study on the effects of joints orientation and strength on failure behavior in shale specimen under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104162. DOI: 10.1016/j.ijimpeng.2022.104162.
    [122] QIU H, ZHU Z M, WANG F, et al. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load [J]. Engineering Fracture Mechanics, 2020, 240: 107202. DOI: 10.1016/j.engfracmech.2020.107202.
    [123] LIU K, ZHANG Q B, ZHAO J. Dynamic increase factors of rock strength [C]//LI C, LI X, ZHANG Z X. Rock Dynamics and Applications 3: Proceedings of the 3rd International Confrence on Rock Dynamics and Applications (RocDyn-3). London: CRC Press, 2018: 169−174. DOI: 10.1201/9781351181327.
    [124] 王伟, 王奇智, 石露, 等. 爆炸荷载下岩石Ⅰ型微裂纹动态扩展研究 [J]. 岩石力学与工程学报, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.

    WANG W, WANG Q Z, SHI L, et al. Dynamic extension of mode Ⅰ microcracks of rocks under blasting loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.
    [125] LIU C Y, YANG J X, YU B. Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock [J]. International Journal of Mining Science and Technology, 2017, 27(5): 795–801. DOI: 10.1016/j.ijmst.2017.07.016.
    [126] HE C L, YANG J, YU Q. Laboratory study on the dynamic response of rock under blast loading with active confining pressure [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 101–108. DOI: 10.1016/j.ijrmms.2018.01.011.
    [127] PENG J Y, ZHANG F P, YAN G L, et al. Experimental study on rock-like materials fragmentation by electric explosion method under high stress condition [J]. Powder Technology, 2019, 356: 750–758. DOI: 10.1016/j.powtec.2019.09.001.
    [128] 闫广亮, 张凤鹏, 郝红泽, 等. 电爆炸破碎岩石类脆性材料实验方法与应用 [J]. 煤炭学报, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.

    YAN G L, ZHANG F P, HAO H Z, et al. Experimental method and application of electrical explosion for breaking rock-like brittle materials [J]. Journal of China Coal Society, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.
    [129] LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [130] LIU R F, ZHU Z M, LI Y X, et al. Study of rock dynamic fracture toughness and crack propagation parameters of four brittle materials under blasting [J]. Engineering Fracture Mechanics, 2020, 225: 106460. DOI: 10.1016/j.engfracmech.2019.04.034.
    [131] WAN D Y, ZHU Z M, LIU R F, et al. Measuring method of dynamic fracture toughness of mode Ⅰ crack under blasting using a rectangle specimen with a crack and edge notches [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104104. DOI: 10.1016/j.ijrmms.2019.104104.
    [132] 李盟, 朱哲明, 刘瑞峰, 等. 孔洞对爆生裂纹动态扩展行为影响研究 [J]. 岩土工程学报, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.

    LI M, ZHU Z M, LIU R F, et al. Influences of holes on dynamic propagation behaviors of blasting cracks [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.
    [133] QIU P, YUE Z W, YANG R S. Experimental study on mode-Ⅰ and mixed-mode crack propagation under tangentially incident P waves, S waves and reflected waves in blasts [J]. Engineering Fracture Mechanics, 2021, 247: 107664. DOI: 10.1016/j.engfracmech.2021.107664.
    [134] CHEN C, YANG R S, XU P, et al. Experimental study on the interaction between oblique incident blast stress wave and static crack by dynamic photoelasticity [J]. Optics and Lasers in Engineering, 2022, 148: 106764. DOI: 10.1016/j.optlaseng.2021.106764.
    [135] QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821. DOI: 10.1016/j.ijimpeng.2021.103821.
    [136] YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. DOI: 10.1016/j.engfracmech.2017.08.037.
    [137] QIU P, YUE Z W, YANG R S, et al. Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method [J]. Engineering Fracture Mechanics, 2019, 212: 164–179. DOI: 10.1016/j.engfracmech.2019.03.018.
    [138] XU P, YANG R S, GUO Y, et al. Investigation of the effect of the blast waves on the opposite propagating crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104818. DOI: 10.1016/j.ijrmms.2021.104818.
    [139] 刘瑞峰, 朱哲明, 刘邦, 等. 爆炸载荷下砂岩动态断裂特性的试验研究 [J]. 岩石力学与工程学报, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.

    LIU R F, ZHU Z M, LIU B, et al. Experimental study on dynamic fracture characteristics of sandstones under blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.
    [140] LIU R F, ZHU Z M, LI M, et al. Study on dynamic fracture behavior of mode Ⅰ crack under blasting loads [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 47–57. DOI: 10.1016/j.soildyn.2018.11.009.
    [141] XU P, YANG R S, GUO Y, et al. Investigation of the blast-induced crack propagation behavior in a material containing an unfilled joint [J]. Applied Sciences, 2020, 10(13): 4419. DOI: 10.3390/app10134419.
    [142] GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic failure of composite strips under reverse ballistic impact [J]. International Journal of Mechanical Sciences, 2022, 234: 107700. DOI: 10.1016/j.ijmecsci.2022.107700.
    [143] GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic fracture of glass fiber-reinforced ductile polymer matrix composites and loading rate effect [J]. Composites Part B: Engineering, 2022, 235: 109754. DOI: 10.1016/j.compositesb.2022.109754.
    [144] GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. DOI: 10.1016/j.ndteint.2022.102636.
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  215
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-05-05
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回