• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

动荷载下岩石裂纹动态扩展行为实验研究综述

高维廷 朱哲明 朱伟 邹明

申涛, 罗宁, 向俊庠, 高祥涛. 切缝药包爆炸作用机理数值模拟[J]. 爆炸与冲击, 2018, 38(5): 1172-1180. doi: 10.11883/bzycj-2017-0410
引用本文: 高维廷, 朱哲明, 朱伟, 邹明. 动荷载下岩石裂纹动态扩展行为实验研究综述[J]. 爆炸与冲击, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526
SHEN Tao, LUO Ning, XIANG Junxiang, GAO Xiangtao. Numerical simulation on explosion mechanism of split-tube charge holders[J]. Explosion And Shock Waves, 2018, 38(5): 1172-1180. doi: 10.11883/bzycj-2017-0410
Citation: GAO Weiting, ZHU Zheming, ZHU Wei, ZOU Ming. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review[J]. Explosion And Shock Waves, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526

动荷载下岩石裂纹动态扩展行为实验研究综述

doi: 10.11883/bzycj-2022-0526
基金项目: 国家自然科学基金(U19A2098, 12272247)
详细信息
    作者简介:

    高维廷(1997- ),男,博士研究生,gaoweitingscu@126.com

    通讯作者:

    朱哲明(1965- ),男,博士,教授,博士生导师,zhemingzhu@hotmail.com

  • 中图分类号: O384

Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review

  • 摘要: 岩石的动态裂纹扩展特性在岩石力学和岩石工程研究中具有重要意义。动荷载下岩石中裂纹的扩展行为是瞬间发生的,这对实验中测试和加载技术具有很大的挑战性。为综述动荷载下岩石材料裂纹扩展研究取得的丰硕成果,总结了岩石动态裂纹扩展测试技术、实验设备和实验方法等方面的最新进展。首先,讨论了动态岩石裂纹扩展测试的各种测量技术(X射线计算机断层扫描技术、焦散线法、数字图像相关法、裂纹扩展计、导电碳膜测试方法、声发射);然后,以应变率为主线,从低到高依次总结了中低应变率、高应变率和超高应变率下岩石内裂纹动态扩展行为研究,系统讨论了落锤冲击装置、霍普金森压杆、爆炸实验中对裂纹扩展测试的实验方法和动态裂纹扩展特性,总结了不同应变率条件下岩石裂纹的起裂、扩展、止裂及动态断裂韧度等的演变规律。
  • 爆破施工过程中常采用不耦合装药结构,不耦合装药结构可以使爆炸冲击波的波峰变缓、压力峰值降低,从而减小炮孔近区粉碎区范围,有效提高炸药的能量利用率[1]。作用于炮孔孔壁的压力峰值,直接影响岩石粉碎区范围及爆破破坏程度,是进行岩石爆破破坏分析和非流固耦合爆炸冲击动力响应的关键参数之一。因此,研究不耦合装药爆破孔壁压力峰值,对提高炸药能量利用率及获得理想的爆破效果具有十分重要的意义[2]

    利用成品炸药卷进行钻孔爆破作业时,一般采用不耦合装药结构。根据不耦合系数的大小,不耦合装药爆破又大致可分为两类:一类是主爆孔、缓冲孔、崩落孔、掏槽孔中应用的不耦合系数通常小于1.5的不耦合装药爆破,本文中统称为小不耦合系数装药爆破;另一类是轮廓爆破中使用的不耦合系数一般大于1.5的不耦合装药爆破。对不耦合装药条件下的孔壁压力峰值已有较多研究:朱瑞赓等[3]较早地推导出考虑时间和不耦合系数的孔壁压力计算公式;万元林等[4]分析了5种常见的不耦合装药条件下孔壁压力计算方法的优缺点;刘云川等[1]指出常用的孔壁压力峰值计算方法不适用于小不耦合装药爆破;李玉民等[5]基于爆破过程中炸药实际爆轰过程、空气冲击波与岩石相互作用过程,建立了一种新的物理模型;朱振海等[6]基于动光弹方法,分析了不耦合系数对爆炸应力场的影响;Feldgun等[7]提出了一种模拟爆炸荷载的试验方法,并研究了爆炸荷载的峰值压力及其变化过程。对不耦合装药爆破炮孔的压力峰值问题也有大量研究[8-10],但都没有根据炮孔直径与药卷直径的关系进行细化研究,即认为研究成果对于任意不耦合系数下的爆破孔壁压力峰值计算都是适用的,且大部分研究侧重于轮廓爆破的孔壁压力峰值的计算,对小不耦合系数装药爆破孔壁压力峰值计算方法的研究则较缺乏。总体上,由于炮孔内炸药起爆后作用于炮孔壁的过程十分复杂,从理论与试验的角度均很难精确获得爆破炮孔壁压力峰值,且与小不耦合系数装药爆破孔壁压力峰值计算直接相关的理论分析与数值模拟计算的缺乏,使得现有的不耦合装药爆破孔壁压力峰值计算方法应用于不耦合系数较小的不耦合装药爆破时,计算结果与实际情况差距较大。

    目前,被用作计算任意不耦合系数下爆破孔壁压力峰值的常用方法有下面两种。

    (1)等熵膨胀法,小不耦合系数装药爆破过程中,爆生气体的膨胀只经历等熵膨胀过程[11],炮孔孔壁压力峰值计算公式为:

    pr=npw(dcdb)2γ
    (1)

    式中:pr为孔壁压力峰值;pw为平均爆轰压力,pw=(ρeD2)/2(γ+1),ρe为炸药密度,D为炸药爆速,γ为等熵指数,通常取γ=3.0;dc为装药直径,db为炮孔直径;n为压力增大倍数,一般取n=8~11。

    (2)爆轰产物最大扩散速度法,基于炮孔中空气冲击波特性计算。炮孔孔壁压力峰值计算公式为:

    pr=2n¯k+1ρaD2a
    (2)

    式中:ρa为空气密度;Da为孔壁空气冲击波的传播速度,¯k为空气的平均绝热指数;压力增大倍数n的值取决于入射波的压力[12],一般为0~20。

    应用这两种常用的计算方法得到的孔壁压力峰值均与压力增大倍数n的取值密切相关。方法(1)中不耦合系数对孔壁压力峰值的影响体现在其对炮孔内压力的影响,方法(2)中不耦合系数对孔壁压力峰值的影响体现在其对空气冲击波强度的影响,两种常用的计算方法均没有考虑不耦合系数对空气冲击波与炮孔壁相互作用的影响,即认为对于任意不耦合系数都是适用的,这显然是不合理的。原因在于,当不耦合系数较小时,方法(1)中n取小值8时,计算得到的爆破孔孔壁压力峰值会比耦合装药爆破孔壁压力峰值还要大,方法(2)中n值会远大于20,计算得到的孔壁压力峰值也比耦合装药爆破孔壁压力峰值大。文献[13]中提出了一种轮廓爆破(不耦合系数大于1.5)孔壁压力峰值计算方法,表明不耦合系数对炮孔孔内压力及冲击波与炮孔壁相互作用均有着显著的影响,这从侧面反映了研究小不耦合系数装药爆破孔壁压力峰值计算方法的必要性。

    综上所述,目前小不耦合系数装药爆破孔壁压力峰值计算方法有待优化和改进。本文在轮廓爆破孔壁压力峰值计算方法研究的基础上,针对小不耦合系数装药爆破孔壁压力峰值的计算问题,结合理论推导结果与数值模拟计算结果,考虑炸药与炮孔壁间的空气冲击波与爆轰膨胀产物没有分离的实际情况,理论分析空气冲击波正入射爆破孔壁的透、反射效应,研究小不耦合系数工况下爆破孔壁上的压力峰值与爆轰产物历经一阶段等熵膨胀后的压力之间的关系,提出一种小不耦合系数装药爆破孔壁压力峰值计算方法。

    不耦合装药爆破过程中,炸药的爆轰过程、空气冲击波的产生与传播过程、空气冲击波与炮孔壁的相互作用过程十分复杂,炮孔壁的弧面特征导致的冲击波透、反射叠加效应,柱状装药爆破点起爆条件下爆轰波沿轴向传播等,均增加了从理论上精确计算炮孔孔壁压力峰值的困难。为了便于研究,将空气冲击波与炮孔壁的作用界面简化为一平面,并假定炮孔壁为弹性壁,且假设空气冲击波正入射交界面,同时,将空气冲击波与炮孔壁的相互作用简化为一维平面问题,即不考虑爆轰波沿轴向传播对炮孔孔壁压力峰值的影响。

    考虑一维平面流动情况下,空气不耦合装药爆破过程中,爆轰波传播至炸药与空气间隔的分界面前及初始透射入空气的压力分布如图1所示。图中p0为空气初始压力,ps为透射入空气的压力,px为分界面处的压力,pH为爆轰波波阵面压力。图1(a)表示爆轰波未传至炸药与空气间隔分界面前的阶段;图1(b)表示爆轰波透射入空气间隔后的阶段,此时,爆轰过程已经结束,初始爆轰产物压缩空气形成初始空气冲击波[14];同时,在爆轰产物中传入的稀疏波降低了爆轰产物压力,爆轰产物与空气的分界面速度和压力分别为uxpx。空气冲击波与爆轰产物的分离距离很难确定,球形装药爆破过程中,二者在10~15倍装药半径时才会分离[15],因此,对于较小不耦合系数的柱状装药爆破来说,空气冲击波在传播过程中并没有与爆轰产物分离。

    图  1  爆轰波到达分界面前、后压力分布
    Figure  1.  Pressure distribution before and after detonation wave reaches the interface

    不耦合系数较小的工况下,炸药与炮孔壁之间空气间隔很薄,空气冲击波与爆轰产物并没有分离,空气冲击波在薄层空气间隔传播过程中,空气冲击波波后物质受到爆轰产物的影响,使得波后参数不能直接按照空气冲击波三大守恒方程计算,空气间隔越薄,爆轰产物对空气冲击波波后物质影响越大,因此可以近似用爆轰产物参数作为空气冲击波波后参数来分析空气冲击波与炮孔壁的相互作用。本文中主要讨论空气冲击波正入射炮孔壁,且将炮孔壁简化为图2所示的弹性界面F-F,空气冲击波传至炮孔壁时,透射入岩体中形成右传冲击波,反射入空气冲击波波后物质中形成左传冲击波或稀疏波。

    图  2  空气冲击波碰撞炮孔壁时的参数
    Figure  2.  Parameters when the air shock wave impacts the borehole wall

    假设p10ρ10u10分别代表空气冲击波波后物质的压力、密度和速度,p20≈0,ρ20u20≈0分别代表岩体原始压力、密度和速度;Dx1为左传的冲击波或稀疏波波速,Dx2为右传的冲击波波速;px1ρx1ux1分别为左侧界面的压力、密度和速度,px2ρx2ux2分别为右侧界面的压力、密度和速度。下面基于弹性理论与波动理论分析空气冲击波与弹性壁的相互作用。

    空气冲击波作用下,岩石介质中一定会形成冲击波,空气冲击波波后物质中形成的反射波是冲击波还是稀疏波则取决于空气冲击波波后物质与岩石冲击阻抗的大小。当空气冲击波波后物质中形成的反射波是稀疏波时,波后产物发生等熵膨胀得到一个附加速度ur,因此,左侧界面的速度ux1[16]

    ux1=u10+ur
    (3)

    ur满足:

    ur=ux1u10=p10px1dpρc
    (4)

    波后产物的等熵方程与声速分别为:

    p=Aργ
    (5)
    c2=(pρ)S
    (6)

    式中:p为压力,γ为等熵指数,c为波后产物声速,ρ为密度。

    联立式(4)~(6)可求得附加速度ur

    ur=2γp10(γ1)ρ10c10[1(px1p10)γ12γ]
    (7)

    式中:px1为炮孔壁左侧界面压力,c10为空气冲击波初始波后产物声速。

    定义n1 = px1/p10,将式(7)代入式(3),可以计算左侧分界面速度:

    ux1=u10+2γp10(γ1)ρ10c10(1n1γ12γ)
    (8)

    当空气冲击波波后物质中形成的反射波是冲击波时,冲击波波后产物的质点速度由u10减低为左侧分界面的运动速度ux1,波后产物也获得一个附加速度ur,这一速度等于ux1u10之差,即:

    ur=ux1u10=(px1p10)(v10vx1)
    (9)

    式中: v10为爆轰产物的比容, vx1为左侧反射冲击波波后物质的比容。空气冲击波波后物质中形成的反射冲击波的Hugoniot方程为:

    vx1v10=(γ+1)p10+(γ1)px1(γ+1)px1+(γ1)p10
    (10)

    联立式(9)~(10),并化简成关于n1的关系式:

    ux1=u10p10v10(n11)[1(γ1)n1+(γ+1)(γ+1)n1+(γ1)]
    (11)

    p10可以按照爆轰产物历经等熵膨胀过程计算:

    p10=ρeD22(γ+1)(dcdb)2γ
    (12)

    对于瞬时爆轰来说,静止高压气体膨胀使得爆轰产物自由飞散,其初始膨胀压力为p0=ρeD2/2(γ+1),初始膨胀速度为u0=0。利用黎曼积分描述高压气体的膨胀过程:

    u10=u0p10p0dpρc
    (13)

    求解式(13)中积分,可得到空气冲击波传过后的产物速度:

    u10=2c0γ1[1(p10p0)γ12γ]
    (14)

    对于岩体中形成的向右传播的冲击波,其质量与动量守恒方程分别为:

    ρ20(Dx2u20)=ρx2(Dx2ux2)
    (15)
    px2p20=ρ20(Dx2u20)(ux2u20)
    (16)

    空气冲击波透射入岩体中形成的冲击波迅速衰减为弹性波,并以恒定速度向前传播,Dx2可近似为岩石纵波波速Dx20。此时孔壁压力px2可以简化成:

    px2ρ20Dx20ux2
    (17)

    定义孔壁压力增大倍数n=px2/p10,孔壁压力增大倍数n的解算步骤为:

    步骤1,联立式(12)、(14)计算空气冲击波波后质点速度u10

    步骤2,假设n1,根据n1的定义式计算px1,基于界面两侧应力连续条件得到px2,在给定岩石波阻抗的情况下,利用式(17)计算岩石介质波后质点速度ux2

    步骤3,利用式(11)计算反射波波后质点速度ux1

    步骤4,根据界面两侧速度连续条件,判断ux1ux2是否相等,若ux1=ux2,说明n1假设正确,根据界面两侧应力连续条件可以得到n=n1,这样便解算出孔壁压力增大倍数n,若ux1ux2,返回步骤2重新假设n1,直到ux1=ux2

    为探寻压力增大倍数n的影响因素,图34分别给出了乳化炸药和铵油炸药工况和不同等熵指数条件下,孔壁压力增大倍数n与透射介质波阻抗的关系。可见,压力增大倍数n与孔壁介质波阻抗密切相关,波阻抗较小时,压力增大倍数变化较大,波阻抗较大时,压力增大倍数趋于稳定。对于小不耦合系数装药爆破,等熵指数对孔壁压力增大倍数n的影响较小;不耦合系数对孔壁压力增大倍数n影响明显,不同不耦合系数工况下,爆生气体膨胀过程差异较大,对膨胀压力影响较大的等熵指数在1.3~3.0之间变化,且不耦合系数不同时,炮孔壁弧面特征使得空气冲击波撞击爆破孔壁的透、反射效应存在显著差异,相应的孔壁压力增大倍数有很大变化,除此之外,不同类型的炸药爆炸后,动力膨胀特性、爆轰产物成分均有着显著差异,这也会对孔壁压力增大倍数产生一定的影响,说明不耦合系数、孔壁介质条件、炸药性能是影响孔壁压力增大倍数n的重要参数。

    图  3  乳化炸药不同装药结构下孔壁压力增大倍数随介质波阻抗的变化规律
    Figure  3.  Change of pressure increase ratio with wave impedance of transmission medium under different charge structures of emulsion explosives
    图  4  铵油炸药不同装药结构下孔壁压力增大倍数随介质波阻抗的变化规律
    Figure  4.  Change of pressure increase ratio with wave impedance of transmission medium under different charge structures of ANFO explosives

    上述研究没有考虑柱状装药结构轴向传爆对径向孔壁压力增大倍数的影响,实际爆破工程中,小不耦合装药结构通常应用于主爆破与缓冲爆破施工中,一般采用雷管引爆,柱状装药结构爆轰波沿轴向传播,使各截面空气冲击波撞击孔壁时产生叠加效应,而球状装药爆轰几乎不产生此叠加效应。对柱状装药结构某一截面A0,存在其他截面Ai处空气冲击波斜撞击截面A0正对着的炮孔壁,截面A0正对着的炮孔孔壁压力峰值,是由截面A0处炸药产生的近似的正入射空气冲击波与其他界面Aii = 1,…,n)炸药爆炸产生的斜入射空气冲击波共同作用产生的。因此,与球状爆破相比,柱状爆破产生的孔壁压力峰值较大,使理论计算所得孔壁压力增大倍数偏小,但由于其他截面Ai与截面A0相对位置不同,空气冲击波斜撞击入射角度不同,随着入射角逐渐增大,冲击波撞击孔壁依次发生正反射、正规反射及马赫反射,因此详细计算各截面Ai对截面A0的空气冲击波的撞击叠加效应十分困难,且柱状装药爆破爆轰波的轴向传爆使各截面正对着的孔壁在变形量和变形时间上均存在明显差异,斜撞击叠加效应十分复杂。此外,爆炸过程中爆轰产物等熵指数并不是恒定不变的,其变化规律一直尚不清楚,因此从理论上精确计算孔壁压力峰值非常困难。下面采用数值模拟方法分析不同小不耦合系数柱状装药结构下的炮孔壁压力峰值。

    采用可以模拟爆炸的显式非线性动力分析程序LS-DYNA,建立三维空气径向不耦合有限元模型,研究小不耦合系数装药爆破中不耦合系数、炮孔介质、炸药性能对孔壁压力峰值的影响。

    为了探究不耦合系数对炮孔孔壁压力增大倍数的影响,根据水电工程钻孔爆破作业过程中常用的几种炮孔直径及成品炸药卷直径,选取钻孔爆破常用的组合76/60、90/60、90/70、90/80、110/80、110/90(“/”前的数字为炮孔直径,“/”后的数字为炸药直径,单位mm),这些工况中的不耦合系数约1.1~1.5,一定程度上能代表小不耦合系数装药工况;为了探究炮孔介质对炮孔孔壁压力增大倍数的影响,选取粉砂岩、石灰岩、花岗岩分别代表软岩、硬岩及坚硬岩炮孔介质;为了探究炸药性能对炮孔孔壁压力增大倍数的影响,选取工程爆破中常用的乳化炸药与多孔粒状铵油炸药进行数值模拟计算。

    基于文献[13]探讨小不耦合系数装药爆破孔壁压力峰值计算方法,计算模型尺寸及边界条件设置均与文献[13]一致,需要说明的是,小不耦合系数装药爆破通常采用点起爆方式引爆炸药,本计算模型中通过关键字*INITIAL_DETONTION将起爆点设置在炸药中部,如图5所示。选取可以考虑应变率的材料模型MAT_PLASTIC_KINEMATIC模拟岩石材料,借助Cowper-Symonds模型考虑应变率对强度的影响,与应变率相关的当前屈服强度为:

    图  5  计算模型示意图
    Figure  5.  Sketch of the calculation model
    σy=[1+(˙εC)1P](σ0+βEpεp,eff)
    (18)

    式中:σ0为初始屈服应力;˙ε为应变率;CP为Cowper-Symonds应变率参数;εp,eff为有效塑性应变;Ep为塑性硬化模量,粉砂岩、石灰岩、花岗岩的相关参数见表1

    表  1  三种典型岩石的物理力学参数
    Table  1.  Physical and mechanical parameters of three typical rocks
    岩石 密度/(kg·m−3) 泊松比 弹性模量/GPa 屈服应力/MPa 切线模量/GPa
    粉砂岩 2170 0.25 6.70 39.20 0.6
    石灰岩 2600 0.25 32.50 72.90 3.0
    花岗岩 2700 0.24 68.00 150.00 7.0
     注:Cowper-Symonds参数C=2.5 s−1,Cowper-Symonds参数P=4.0。
    下载: 导出CSV 
    | 显示表格

    选取MAT_ HIGH_EXPLOSIVE_BURN材料模型,并通过与之对应的EOS_JWL 状态方程来模拟炸药的爆炸冲击动力作用,JWL状态方程如下:

    pex=A(1ωR1V)eR1V+B(1ωR2V)eR2V+ωE0V
    (19)

    式中:pex为爆轰产物的压力,V为相对体积,E0为初始内能密度,ABR1R2ω为常数。参照LS-DYNA 用户手册[17],在表2中列出了工程爆破中常用炸药的计算参数。

    表  2  两种常用炸药的计算参数
    Table  2.  Calculation parameters of two commonly used explosives
    炸药密度/(kg·m−3)爆速/(m·s−1)A/GPaB/GPaR1R2ωE0/GPa
    乳化炸药[18]13004000214.400.1824.200.900.154.192
    多孔粒状铵油炸药[19]11002700191.210.1644.200.900.152.800
    下载: 导出CSV 
    | 显示表格

    选取MAT_NULL材料模型,并通过关键字*EOS_LINEAR_POLYNOMIAL控制的状态方程模拟空气的作用:

    p=C0+C1μ+C2μ2+C3μ3+(C4+C5μ+C6μ2)e
    (20)

    式中:C0= C1= C2= C3= C6=0,C4= C5=0.4;μ=ρ/ρ0,其中ρρ0分别为初始材料密度、当前材料密度;e为比内能。

    图6为部分典型工况下孔壁的压力时程曲线,表34分别给出了乳化炸药、铵油炸药作用下空气冲击波透射压力与入射压力的比值,可以看出,空气冲击波透射入孔壁岩石中的压力增大倍数的影响因素与文献[13]中的相同,主要有不耦合系数、孔壁介质条件和炸药性能,不耦合系数的影响尤其显著。相同条件下,波阻抗较大的透射介质,炮孔壁透射压力较大,反之较小,且波阻抗只在其值较小的范围内对透射压力影响显著,这与图34给出的结论一致。对于小不耦合系数装药爆破,不同岩石介质条件下,透射压力增大倍数相差较小,然而入射压力较大时,较小的透射压力增大系数也会对孔壁压力峰值产生显著影响,不耦合系数越小,这种影响越大,例如表34中相同条件下,装药结构为90/80的计算工况下,粉砂岩与石灰岩、花岗岩孔壁压力峰值相差较大,石灰岩与花岗岩孔壁压力峰值相差较小。需要注意的是,本研究理论计算中炸药特性的差异主要体现在爆轰产物的膨胀压力不同,流-固耦合(ALE)数值计算中炸药特性差异体现在爆轰产物膨胀压力、膨胀规律、产物流体特性等多个方面,这是理论计算和数值计算中,二者在炸药特性对孔壁压力峰值影响敏感度方面存在差异的主要因素。此外,数值计算中,在炸药中部设置了起爆点,可以再现爆轰波沿柱状炸药轴向传播的过程,使数值模拟结果能够较好地体现炸药其他横截面处的空气冲击波对某一横截面正对着的炮孔壁产生的斜撞击叠加效应。

    图  6  部分典型工况下孔壁压力时程曲线
    Figure  6.  Time history curves of the pressure on borehole wall under some typical working conditions
    表  3  乳化炸药作用下空气冲击波透射压力与入射压力的比值
    Table  3.  Transmission-to-incident pressure ratio of air blast wave induced by emulsion explosive
    装药条件不耦合系数p10/MPa粉砂岩石灰岩花岗岩平均值
    px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10
    90/801.13128330002.3442603.3245003.5139203.06
    110/901.2278023312.9930833.9535244.5229793.82
    76/601.2763020803.3026104.1528204.4825033.98
    90/701.2957620303.5328704.9928004.8625674.46
    110/801.3838515774.1022975.9723346.0720695.38
    90/601.5022813205.7818608.1518107.9316637.29
    下载: 导出CSV 
    | 显示表格
    表  4  铵油炸药作用下空气冲击波透射压力与入射压力比值
    Table  4.  Transmission-to-incident pressure ratio of air blast wave induced by ANFO explosive
    装药条件不耦合系数p10/MPa粉砂岩石灰岩花岗岩平均值
    px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10
    90/801.1349427405.5434406.9635707.2232506.57
    110/901.2230120496.8127569.1728939.6225668.53
    76/601.2724317107.0422159.1224029.8821098.68
    90/701.2922216307.35243010.95234010.5521339.61
    110/801.38148153010.32183712.38209814.14182212.28
    90/601.5088109012.39137015.57145016.48130314.81
    下载: 导出CSV 
    | 显示表格

    不耦合系数较小时,采用目前常用的爆破孔壁压力峰值计算方法,计算结果与实际情况不符,寻找一种既符合实际情况又简单方便的小不耦合系数装药爆破孔壁峰值压力计算方法是十分必要的。由前述分析可知,孔壁压力峰值的影响因素主要有不耦合系数、孔壁介质条件与炸药性能。本文中将理论推导结果与数值计算结果相结合,基于数值计算结果中多种工况下的孔壁压力峰值,研究小不耦合系数装药爆破孔壁压力峰值计算方法。

    小不耦合系数装药爆破中,径向不耦合系数一般分布在1.0~1.5之间,爆轰产物的膨胀压力按照其完成等熵膨胀过程计算,因此,以式(12)中的压力p10为入射压力,数值模拟的透射压力为孔壁压力峰值pr,定义压力增大倍数n′=pr/ p10,得到不同不耦合装药工况下的压力增大倍数,由于岩石介质波阻抗只在较小的取值范围内对透射压力影响显著,且对于小不耦合系数装药爆破来说,这种影响不能忽略,因此选用粉砂岩孔壁压力增大倍数、石灰岩与花岗岩孔壁压力增大倍数平均值,分析岩石介质对孔壁压力峰值的影响,见表5。同时在图7中给出不同炸药类型、不同岩石类型条件下孔壁压力峰值随不耦合系数的变化情况。通过对不同炸药类型、不同岩石类型下压力增大倍数随不耦合系数变化曲线进行拟合,结果表明,压力增大倍数随不耦合系数的增大近似呈线性增长,拟合结果的相关系数均高达0.97以上。

    表  5  压力增大倍数n′
    Table  5.  Pressure increase ratio n′
    装药条件不耦合系数乳化炸药铵油炸药
    粉砂岩石灰岩与花岗岩平均值粉砂岩石灰岩与花岗岩平均值
    90/801.132.343.425.547.09
    110/901.222.994.246.819.40
    76/601.273.304.327.049.50
    90/701.293.534.937.3510.75
    110/801.384.106.0210.32 13.26
    90/601.505.788.0412.39 16.03
    下载: 导出CSV 
    | 显示表格
    图  7  压力增大倍数随不耦合系数变化曲线
    Figure  7.  Variation curves of pressure increase ratio with decoupling coefficient

    综合考虑炮孔径向不耦合系数、炸药性能及孔壁岩石介质条件对压力增大倍数的影响,基于爆生气体完成等熵膨胀时的压力p10,拟合炮孔壁的爆炸压力峰值,提出采用下式计算小不耦合系数装药爆破孔的孔壁压力峰值:

    pr=np10=npw(dcdb)2γ
    (21)

    式中:n′为压力增大倍数,其余参数见前述方法(1)。

    对于乳化炸药,计算压力增大倍数的线性拟合公式为:

    n=α(9.1K8.1)R=0.9800.983
    (22)

    对于多孔粒状铵油炸药,计算压力增大倍数的线性拟合公式为:

    n=α(19.5K17.1)R=0.9750.991
    (23)

    式中:K为不耦合系数,K=db/dc=1.13~1.50;α为孔壁介质影响系数,采用乳化炸药时,α=1.0~1.4;采用多孔粒状铵油炸药时,α=1.0~1.3;对于软岩,α取小值,对于硬岩,α取大值;R为拟合结果的相关系数。

    (1)小不耦合系数装药爆破时,空气间隔中产生的冲击波与爆轰产物没有分离,爆轰产物参数会对空气冲击波波后物质参数产生显著影响,空气冲击波作用于炮孔壁后,炮孔壁的压力会显著增大,柱状装药爆轰波的轴向传播使空气冲击波撞击孔壁时产生叠加效应,炮孔壁压力峰值相应增大。

    (2)对不同炸药类型、不同岩石类型下压力增大倍数随不耦合系数变化曲线进行拟合,结果表明,压力增大倍数随不耦合系数的增大近似呈线性增长,综合考虑炮孔径向不耦合系数、炸药性能、孔壁岩石介质条件对压力增大倍数的影响,提出了一种小不耦合系数装药爆破孔壁压力峰值计算方法。

    需要说明的是,本文计算模型是基于理论推导和数值计算结果提出的,尚缺少实验验证。

  • 图  1  岩石工程中影响裂纹扩展的各种因素

    Figure  1.  Influencing factors in rock engineering suffering from various dynamic loads

    图  2  CT扫描技术在岩石动态断裂研究中的应用[33-35]

    Figure  2.  Application of CT scanning technique in rock dynamic fracture study[33-35]

    图  3  数字图像相关原理[46]

    Figure  3.  The digital image correlation principle[46]

    图  4  反射式焦散线法原理示意图[57]

    Figure  4.  Schematic diagram of the reflection caustic method[57]

    图  5  石灰岩试样断裂过程的热成像图像[60]

    Figure  5.  Thermographic images of the fracture process in a limestone specimen[60]

    图  6  导电碳膜对岩石材料裂纹扩展速度的测试原理[62]

    Figure  6.  Test schematic diagram of crack propagation speed in rock material by using a conductive carbon film[62]

    图  7  裂纹扩展计测试系统及其测试结果[63-64]

    Figure  7.  The crack propagation gauge (CPG) test system and its test result[63-64]

    图  8  SHPB-AE系统原理图[76-77]

    Figure  8.  Schematic diagram of the SHPB-AE system[76-77]

    图  9  以应变率划分的岩石动力学问题及对应的实验方法[78]

    Figure  9.  Rock dynamics problems divided by strain rate and the corresponding experimental methods[78]

    图  10  传统实验室落锤装置[79]

    Figure  10.  A traditional laboratory drop-hammer device[79]

    图  11  落锤冲击加载装置[64]

    Figure  11.  The drop-hammer impact loading device[64]

    图  12  落锤冲击下的典型波形[85]

    Figure  12.  Typical waveforms under a drop-hammer impact[85]

    图  13  SCT试件示意图及加载形式[85]

    Figure  13.  Schematic diagram of the SCT specimen and the loading mode[85]

    图  14  不同形状边界的裂纹止裂技术[90-91]

    Figure  14.  Crack arrest techniques for different shape boundaries[90-91]

    图  15  裂隙尖端动态应力强度因子随时间变化[92]

    Figure  15.  Dynamic stress intensity factors at the tip of the fracture over time[92]

    图  16  落锤冲击实验装置及侧向加压设备[94]

    Figure  16.  A drop-hammer impact experimental device and lateral pressure equipment[94]

    图  17  传统分离式霍普金森压杆示意图

    Figure  17.  Schematic diagram of the traditional split Hopkinson pressure bar

    图  18  SCSC试件构型示意图[107]

    Figure  18.  Schematic configuration of the SCSC specimen[107]

    图  19  不同节理倾角页岩试件在冲击作用下的裂纹扩展规律[120]

    Figure  19.  Crack propagation law of shale specimens with different joint inclination angles under impact[120]

    图  20  岩石-砂浆界面在冲击作用下的破坏规律[109,122]

    Figure  20.  Failure law of rock-mortar interface under impact[109,122]

    图  21  实验室岩石爆破加载装置 [23,126,128]

    Figure  21.  Laboratory rock blasting loading devices[23,126,128]

    图  22  爆炸应力波与裂纹相互作用的光弹性实验结果[138]

    Figure  22.  Photoelasticity experimental results during the blast wave-crack interaction[138]

    图  23  爆炸应力波下岩石动态断裂参数的2种测试构型[131,140]

    Figure  23.  Two test configurations of rock dynamic fracture parameters under explosive stress waves[131,140]

    图  24  孔洞对爆生裂纹扩展行为的影响[132]

    Figure  24.  Effect of holes on propagation behaviors of burst cracks[132]

    表  1  动荷载下岩石裂纹扩展测试技术总结

    Table  1.   Summary of techniques for testing rock crack growth under dynamic load

    测试方法适用范围优势不足发展趋势
    X射线
    计算机
    断层扫描
    技术(CT)
    (1)3D裂纹重建
    (2)孔隙率分析
    (3)矿物识别
    (1)可以对岩石试件的内部进行无损成像且可以进行多次测量,以此进行预选试样及事后评估
    (2)可以分析矿物相分布、孔隙空间和其他微观结构特征,提供岩石内部结构的定量信息
    (3)可以对岩石内部裂纹进行3D重建,是为数不多可以研究岩石内部裂纹扩展模式的方法
    (1)CT扫描更适用于对较完整的试样进行事后分析,不适用于动荷载下破碎程度很大的试件
    (2)对于动荷载下的实时测量较困难,原位测试技术有待成熟
    (3)X射线CT扫描分析成本高,实验过程具有放射性,需要专业实验员操作
    (1)实现高精度原位CT扫描技术,还原高应变率下岩石内部3D裂纹扩展
    (2)结合裂隙分布、矿物相和其他物理信息建立多尺度岩石信息模型
    数字图像相关法(DIC)(1)位移、应变测试
    (2) 裂纹扩展速度
    (3) 动态应力强度
    因子
    (1)可以提供高分辨率的变形和位移测量,相比传统测试方法(应变计)更加精细
    (2)非接触测量,不需要与试件进行物理接触,降低了在动荷载下损坏试件的风险,更加适用于岩石这种脆性材料
    (3)对岩石试样进行全场测量,提供全场变形和位移
    (4)计算自动化,在处理数据阶段全自动计算变形和位移等参量,提高结果的可靠性和可重复性
    (1)设置复杂,搭配动荷载装置设置DIC系统是极其复杂的,需要解决同步触发问题
    (2)最终得到的计算结果十分依赖于图像质量,而影响图像质量的因素很多,包括光照、相机采集频率和相机分辨率等
    (3)系统价格昂贵,目前在图像采集和数据计算所需设备和软件均需要很高的成本
    (1)目前应用最广泛的是岩石平整表面的DIC分析,未来可成熟测量曲面、不规则表面的3D-DIC分析
    (2)随着高速摄像技术和DIC数据处理的不断进步,测试范围、测量精度及计算速度会进一步提升
    焦散线实验方法(1)动态应力强度
    因子
    (2)裂纹扩展速度
    (1)焦散线实验是一种非接触无损伤的测试方法
    (2)根据焦散线理论可以计算获得裂纹扩展信息,包括动态应力强度因子、裂纹扩展速度、裂尖能量变化
    (1)用于焦散线实验测试的区域较小,测试样品大小收到限制
    (2)测试方法复杂,需要高水平的专业知识才能准确执行数据结果
    作为传统的光学测量方法,拥有极高的精度,随着高速摄像的不断发展,焦散线技术会集成其他测试方法进而获取更多的物理信息,例如光弹法等
    高速红外热成像法(1)断裂时刻
    (2)断裂热量分布
    (1)红外热成像技术可以实时观测断裂试样表面的温度场,确定裂纹扩展时裂尖端产生的热量(1)缺乏成熟的技术及理论支撑,使得这一技术仍然没有得到充分的利用
    (2)高速红外热成像相机采集频率无法应对动态测试
    (1)热成像技术在断裂力学领域潜力很大,需要对理论及设备进一步完善以获得更多断裂信息
    导电碳膜测试方法(1)裂纹扩展速度(1)具有良好的防水性、抗腐蚀性及热稳定性,可以对极端环境因素下的岩石裂纹扩展进行监测(1)为保障测试精度,需要对裂纹扩展路径进行预测,且仅适用于光滑岩石表面
    (2)目前应用范围较小,仅适用于特定复杂环境下的测试
    未来多物理场耦合作用下的岩石破坏是研究重点,可能获得广泛应用
    裂纹扩
    展计
    (1)裂纹扩展速度(1)测试系统搭建相对简单
    (2)相比传统电测应变计,可以连续测量裂纹扩展速度,测量间隔最低可达0.5 μs
    (1)为保障测试精度,需要对裂纹扩展路径进行预测,且仅适用于光滑岩石表面
    (2)测量范围有限
    随着高速摄像和DIC技术的不断发展,未来会逐步被取代
    声发射(1)裂纹扩展特征
    (2)损伤积累
    (1)敏感度高,可以监测到岩石试件的微小变化
    (2)在破坏过程中持续监测,提供详细的声发射数据
    (3)不会以任何方式改变岩石试样,可以对同一样品进行多次测试
    (1)虽然声发射提供了大量的数据,但是在没有对岩石破坏过程有深入探究的情况下很难正确分析结果
    (2)动荷载在声发射监测中会造成极大的扰动,难以获得准确的结果
    (3)在动态测试中,需要采集频率和敏感度更高的采集设备,同时需要具备信号处理技术
    (1)利用机器学习算法,采用先进的信号处理技术对原始信号进行分类,精准识别岩石破坏机制
    (2)集成其他测试技术,如DIC测试方法,提供更详细的岩石变形和破坏过程
    下载: 导出CSV

    表  2  分离式霍普金森压杆在岩石动态断裂测试中的主要发展

    Table  2.   Main developments of split Hopkinson pressure bars in rock dynamic fracture tests

    年份主要发展来源
    1966应力-应变关系文献[96]
    1968使用高速摄像机记录岩石动态断裂文献[97]
    1972在SHPB中加入静水围压装置,应力-应变关系,不同形状弹头文献[98]
    2001金属脉冲整形技术文献[99]
    2004动量陷阱技术文献 [100]
    2008SHPB杆径与加载率的关系文献[101]
    2008动-静应力耦合状态下岩石动力测试文献[102]
    2010人字形缺口巴西圆盘测试动态断裂韧度文献[103]
    2011人字形缺口半圆弯曲试样测试动态断裂韧度文献[104]
    2011三轴分离式霍普金森压杆系统文献[105]
    2012围压和温度的耦合作用文献[106]
    2015DIC技术应用于缺口半圆弯曲试样文献[45]
    2016Ⅰ/Ⅱ复合型裂纹扩展规律研究文献[107]
    20183D-DIC,全场应力应变监测文献[50]
    2018节理粗糙度对岩体应力波能量的影响文献[108]
    2020岩石-混凝土界面断裂性质文献[109]
    2020热-水-力耦合条件下深部砂岩的冲击动力学特性文献[110]
    2020含节理岩石中应力波传播特性文献[111]
    2021真三轴电磁霍普金森压杆文献[112]
    2022高温处理后Ⅰ型裂纹的扩展文献[113]
    2022冻融循环下砂岩的断裂特征文献[114]
    2022非均质的基质包裹体岩石的断裂性质文献[77]
    2022应力波在岩体中传播的非衰减特性文献[115]
    下载: 导出CSV
  • [1] AZIZNEJAD S, ESMAIELI K, HADJIGEORGIOU J, et al. Responses of jointed rock masses subjected to impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 624–634. DOI: 10.1016/j.jrmge.2017.12.006.
    [2] 李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.

    LI D Y, WAN Q R, ZHU Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods [J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.
    [3] 王思敬. 论岩石的地质本质性及其岩石力学演绎 [J]. 岩石力学与工程学报, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.

    WANG S J. Geological nature of rock and its deduction for rock mechanics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.
    [4] KONG R, FENG X T, ZHANG X W, et al. Study on crack initiation and damage stress in sandstone under true triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 117–123. DOI: 10.1016/j.ijrmms.2018.04.019.
    [5] NARA Y, KASHIWAYA K, NISHIDA Y, et al. Influence of surrounding environment on subcritical crack growth in marble [J]. Tectonophysics, 2017, 706/707: 116–128. DOI: 10.1016/j.tecto.2017.04.008.
    [6] SWANSON P L. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4137–4152. DOI: 10.1029/JB089iB06p04137.
    [7] 冯夏庭, 丁梧秀. 应力-水流-化学耦合下岩石破裂全过程的细观力学试验 [J]. 岩石力学与工程学报, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.

    FENG X T, DING W X. Meso-mechanical experiment of microfracturing process of rock under coupled mechanical-hydrological-chemical environment [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.
    [8] DONG Y Q, ZHU Z M, ZHOU L, et al. Study of mode Ⅰ crack dynamic propagation behaviour and rock dynamic fracture toughness by using SCT specimens [J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41(8): 1810–1822. DOI: 10.1111/ffe.12823.
    [9] YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
    [10] ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
    [11] 王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究 [J]. 岩石力学与工程学报, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.

    WANG F, WANG M, ZHU Z M, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.
    [12] LIANG Z Z, XING H, WANG S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw [J]. Computers and Geotechnics, 2012, 45: 19–33. DOI: 10.1016/j.compgeo.2012.04.011.
    [13] PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135–154. DOI: 10.1007/s00603-017-1316-x.
    [14] 李博, 朱强, 张丰收, 等. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.

    LI B, ZHU Q, ZHANG F S, et al. Study on crack propagation of heterogeneous rocks with double flaws based on grain based model [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.
    [15] KAWAMOTO T, AYDAN Ö. A review of numerical analysis of tunnels in discontinuous rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1377–1391. DOI: 10.1002/(SICI)1096-9853(199911)23:13<1377::AID-NAG932>3.0.CO;2-S.
    [16] BAŽANT Z P. Concrete fracture models: testing and practice [J]. Engineering Fracture Mechanics, 2002, 69(2): 165–205. DOI: 10.1016/S0013-7944(01)00084-4.
    [17] 岳中文, 陈彪, 杨仁树. 冲击载荷下岩石材料动态断裂韧性测试研究进展 [J]. 工程爆破, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.

    YUE Z W, CHEN B, YANG R S. Development and new achievements on rock dynamic fracture toughness testing under impact load [J]. Engineering Blasting, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.
    [18] 赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考 [J]. 地下空间与工程学报, 2016, 12(S2): 899–906.

    ZHAO H B, HU G L, LI W, et al. Research progress and thinking on the crack propagation law of pre-fractured rock [J]. Chinese Journal of Underground Space and Engineering, 2016, 12(S2): 899–906.
    [19] LIU Y, DAI F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1203–1230. DOI: 10.1016/j.jrmge.2021.03.012.
    [20] CERFONTAINE B, COLLIN F. Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 391–414. DOI: 10.1007/s00603-017-1337-5.
    [21] 夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展 [J]. 岩石力学与工程学报, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.

    XIA K W, WANG S, XU Y, et al. Advances in experimental studies for deep rock dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.
    [22] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [23] XU P, YANG R S, ZUO J J, et al. Research progress of the fundamental theory and technology of rock blasting [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 705–716. DOI: 10.1007/s12613-022-2464-x.
    [24] JU M H, LI X F, LI X, et al. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism [J]. Engineering Fracture Mechanics, 2022, 263: 108297. DOI: 10.1016/j.engfracmech.2022.108297.
    [25] CAO R H, CAO P, LIN H, et al. Crack initiation, propagation, and failure characteristics of jointed rock or rock-like specimens: a review [J]. Advances in Civil Engineering, 2019, 2019: 6975751. DOI: 10.1155/2019/6975751.
    [26] AHMED Z, WANG S H, HASHMI M Z, et al. Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review [J]. Arabian Journal of Geosciences, 2020, 13(16): 806. DOI: 10.1007/s12517-020-05755-3.
    [27] JENABIDEHKORDI A. Computational methods for fracture in rock: a review and recent advances [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 273–287. DOI: 10.1007/s11709-018-0459-5.
    [28] SARFARAZI V, HAERI H. A review of experimental and numerical investigations about crack propagation [J]. Computers and Concrete, 2016, 18(2): 235–266. DOI: 10.12989/cac.2016.18.2.235.
    [29] SHU Y, ZHU Z M, WANG M, et al. A modified JH2 model with improved strength model, damage evolution, and equation of state for rock under impact and blasting loads [J]. Mechanics of Materials, 2022, 174: 104454. DOI: 10.1016/j.mechmat.2022.104454.
    [30] SHU Y, ZHU Z M, WANG M, et al. A plastic damage constitutive model for rock-like material focusing on the hydrostatic pressure induced damage and the interaction of tensile and shear damages under impact and blast loads [J]. Computers and Geotechnics, 2022, 150: 104921. DOI: 10.1016/j.compgeo.2022.104921.
    [31] WAN D Y, WANG M, ZHU Z M, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture [J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097–1114. DOI: 10.1016/j.ijmst.2022.08.012.
    [32] 陈鹏宇. PFC2D模拟裂隙岩石裂纹扩展特征的研究现状 [J]. 工程地质学报, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.

    CHEN P Y. Research progress on PFC2D simulation of crack propagation characteristics of cracked rock [J]. Journal of Engineering Geology, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.
    [33] HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497.
    [34] LI J, WANG H C, ZHANG Q B. Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104979. DOI: 10.1016/j.ijrmms.2021.104979.
    [35] XING H Z, XIE F, WANG M Y, et al. Experimental investigation of fracture process zone of rock in dynamic mode Ⅰ fracturing and its effect on dynamic crack initiation toughness [J]. Engineering Fracture Mechanics, 2022, 275: 108828. DOI: 10.1016/j.engfracmech.2022.108828.
    [36] 张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究 [J]. 岩土力学, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.

    ZHANG Y B, XU Y D, LIU X X, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT [J]. Rock and Soil Mechanics, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.
    [37] GHAMGOSAR M, ERARSLAN N, WILLIAMS D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings [J]. Experimental Mechanics, 2017, 57(1): 97–113. DOI: 10.1007/s11340-016-0216-4.
    [38] WANG H, GAO Y T, ZHOU Y. Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103167. DOI: 10.1016/j.tafmec.2021.103167.
    [39] YANG S Q, YIN P F, HUANG Y H, et al. Strength, deformability and X-ray micro-CT observations of transversely isotropic composite rock under different confining pressures [J]. Engineering Fracture Mechanics, 2019, 214: 1–20. DOI: 10.1016/j.engfracmech.2019.04.030.
    [40] ZHONG Z, HUANG D, SONG Y X, et al. Three-dimensional cracking and coalescence of two spatial-deflection joints in rock-like specimens under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105196. DOI: 10.1016/j.ijrmms.2022.105196.
    [41] 王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.

    WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.
    [42] COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14(6): T06008. DOI: 10.1088/1748-0221/14/06/t06008.
    [43] PARAB N D, CLAUS B, HUDSPETH M C, et al. Experimental assessment of fracture of individual sand particles at different loading rates [J]. International Journal of Impact Engineering, 2014, 68: 8–14. DOI: 10.1016/j.ijimpeng.2014.01.003.
    [44] 杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析 [J]. 煤炭学报, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.

    YANG R S, LI W Y, LI Y L, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks [J]. Journal of China Coal Society, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.
    [45] GAO G, HUANG S, XIA K, et al. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2015, 55(1): 95–104. DOI: 10.1007/s11340-014-9863-5.
    [46] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [47] YAN Z L, DAI F, ZHU J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 5117–5139. DOI: 10.1007/s00603-021-02564-2.
    [48] ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
    [49] LIU W, HU C Y, LI L K, et al. Experimental study on dynamic notch fracture toughness of V-notched rock specimens under impact loads [J]. Engineering Fracture Mechanics, 2022, 259: 108109. DOI: 10.1016/j.engfracmech.2021.108109.
    [50] XING H Z, ZHANG Q B, RUAN D, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation [J]. International Journal of Impact Engineering, 2018, 113: 61–72. DOI: 10.1016/j.ijimpeng.2017.11.011.
    [51] GAO G, YAO W, XIA K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method [J]. Engineering Fracture Mechanics, 2015, 138: 146–155. DOI: 10.1016/j.engfracmech.2015.02.021.
    [52] JU M H, LI J C, YAO Q L, et al. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods [J]. Engineering Fracture Mechanics, 2019, 219: 106537. DOI: 10.1016/j.engfracmech.2019.106537.
    [53] 李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究 [J]. 岩石力学与工程学报, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.

    LI D Y, HU C W, ZHU Q Q. Experimental study on mechanical properties and failure laws of granite with an artificial flaw under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.
    [54] 王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石材料板动态压缩破坏试验研究 [J]. 岩石力学与工程学报, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.

    WANG Q Z, WU B B, LIU F, et al. Dynamic failure of manufactured similar rock plate containing a single fissure [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.
    [55] FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
    [56] RAVI-CHANDAR K. Chapter 8 : crack tip stress and deformation field measurement [M]//RAVI-CHANDAR K. Dynamic Fracture. Oxford: Elsevier, 2004: 107−139. DOI: 10.1016/B978-008044352-2/50008-9.
    [57] 励争, 苏先基, 傅缤. 水泥石动态断裂韧性的实验研究 [J]. 力学与实践, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.

    LI Z, SU X J, FU B. Determination of dynamic fracture toughness for cement block [J]. Mechanics and Engineering, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.
    [58] YANG R S, YUE Z W, SUN Z H, et al. Dynamic fracture behavior of rock under impact load using the caustics method [J]. Mining Science and Technology (China), 2009, 19(1): 79–83. DOI: 10.1016/S1674-5264(09)60015-6.
    [59] XU P, YANG R S, GUO Y, et al. Investigation of the interaction mechanism of two dynamic propagating cracks under blast loading [J]. Engineering Fracture Mechanics, 2022, 259: 108112. DOI: 10.1016/j.engfracmech.2021.108112.
    [60] SALAMI Y, DANO C, HICHER P Y. Infrared thermography of rock fracture [J]. Géotechnique Letters, 2017, 7(1): 36–40. DOI: 10.1680/jgele.16.00131.
    [61] LIU J, YANG F, XU X. Experimental on infrared radiation characteristics of high strength concrete during fracturing process [J]. Materials Research Innovations, 2015, 19(S5): 1107–1111. DOI: 10.1179/1432891714Z.0000000001258.
    [62] YI W, RAO Q H, LI Z, et al. A new measurement method of crack propagation rate for brittle rock under THMC coupling condition [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1728–1736. DOI: 10.1016/s1003-6326(19)65080-6.
    [63] DONG Y Q, ZHU Z M, REN L, et al. Crack dynamic propagation properties and arrest mechanism under impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1171–1184. DOI: 10.1016/j.jrmge.2020.01.008.
    [64] GAO W T, ZHU Z M, YING P, et al. Study on dynamic fracture properties of sandstone under the effect of high-temperature using large-scale sample [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103550. DOI: 10.1016/j.tafmec.2022.103550.
    [65] ZHOU L, MA L J, ZHU Z M, et al. Study of the coupling effect of elliptical cavities and cracks on tunnel stability under dynamic loads [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103502. DOI: 10.1016/j.tafmec.2022.103502.
    [66] YING P, ZHU Z M, WANG F, et al. The characteristics of dynamic fracture toughness and energy release rate of rock under impact [J]. Measurement, 2019, 147: 106884. DOI: 10.1016/j.measurement.2019.106884.
    [67] GAO W T, ZHU Z M, WANG M, et al. Influence of the interlaced holes on crack propagation behavior under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104178. DOI: 10.1016/j.ijimpeng.2022.104178.
    [68] LOCKNER D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883–899. DOI: 10.1016/0148-9062(93)90041-B.
    [69] YANG J, MU Z L, YANG S Q. Experimental study of acoustic emission multi-parameter information characterizing rock crack development [J]. Engineering Fracture Mechanics, 2020, 232: 107045. DOI: 10.1016/j.engfracmech.2020.107045.
    [70] WANG Y Y, DENG H C, DENG Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location [J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. DOI: 10.1016/j.petrol.2021.108420.
    [71] 张茹, 谢和平, 刘建锋, 等. 单轴多级加载岩石破坏声发射特性试验研究 [J]. 岩石力学与工程学报, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.

    ZHANG R, XIE H P, LIU J F, et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.
    [72] WANG Z H, LI Y, CAI W B, et al. Crack propagation process and acoustic emission characteristics of rock-like specimens with double parallel flaws under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 102983. DOI: 10.1016/j.tafmec.2021.102983.
    [73] SHI Z M, LI J T, WANG J. Effect of creep load on fatigue behavior and acoustic emission characteristics of sandstone containing pre-existing crack during fatigue loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103296. DOI: 10.1016/j.tafmec.2022.103296.
    [74] LIU L W, LI H B, LI X F. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 2034–2057. DOI: 10.1016/j.jrmge.2022.03.013.
    [75] ZHANG J Z, ZHOU X P. Fracture process zone (FPZ) in quasi-brittle materials: review and new insights from flawed granite subjected to uniaxial stress [J]. Engineering Fracture Mechanics, 2022, 274: 108795. DOI: 10.1016/j.engfracmech.2022.108795.
    [76] LI J, ZHAO J, WANG H C, et al. Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests [J]. Engineering Fracture Mechanics, 2021, 252: 107817. DOI: 10.1016/j.engfracmech.2021.107817.
    [77] WANG H C, ZHAO J, LI J, et al. Fracturing and AE characteristics of matrix-inclusion rock types under dynamic Brazilian testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 157: 105164. DOI: 10.1016/j.ijrmms.2022.105164.
    [78] CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [79] KHANDOUZI G, MEMARIAN H, KHOSRAVI M H. Development of a new experimental technique for dynamic fracture toughness measurement of rocks using drop weight test [J]. Joural of Mining and Environment, 2020, 11(3): 909–920. DOI: 10.22044/jme.2020.9818.1903.
    [80] SUN B, LIU S, ZENG S, et al. Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings [J]. Scientific Reports, 2021, 11(1): 13071. DOI: 10.1038/s41598-021-92277-x.
    [81] YANG S L, YUE H, CHEN X L, et al. Experimental study on damage evolution characteristics of coal samples under impact load under different surrounding pressures [J]. Lithosphere, 2022, 2022(Special 11): 1061545. DOI: 10.2113/2022/1061545.
    [82] FENG W H, TANG Y C, HE W M, et al. Mode Ⅰ dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar [J]. Journal of Building Engineering, 2022, 48: 103995. DOI: 10.1016/j.jobe.2022.103995.
    [83] REDDISH D J, STACE L R, VANICHKOBCHINDA P, et al. Numerical simulation of the dynamic impact breakage testing of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 167–176. DOI: 10.1016/j.ijrmms.2004.06.004.
    [84] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [85] DONG Y Q, ZHU Z M, YU L Y, et al. Investigation of dynamic fracture in VASCT samples under the effect of different loading modes [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103321. DOI: 10.1016/j.tafmec.2022.103321.
    [86] ZHOU L, ZHU Z M, QIU H, et al. Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 25–34. DOI: 10.1016/j.ijrmms.2018.10.011.
    [87] 周磊, 朱哲明, 董玉清, 等. 动态加载率对巷道内裂纹扩展速度及动态起裂韧度的影响 [J]. 振动与冲击, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Effect of dynamic loading rate on crack propagation velocity and dynamic fracture toughness in tunnels [J]. Journal of Vibration and Shock, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.
    [88] 董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.

    DONG Y Q, ZHU Z M, WANG M, et al. Mode Ⅰ crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
    [89] WANG X M, ZHU Z M, WANG M, et al. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts [J]. Engineering Fracture Mechanics, 2017, 181: 52–64. DOI: 10.1016/j.engfracmech.2017.06.024.
    [90] LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
    [91] LANG L, ZHU Z M, DENG S, et al. Study of crack arrest mechanism and dynamic behaviour using arc-bottom specimen under impacts [J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(9): 2040–2054. DOI: 10.1111/ffe.13282.
    [92] ZHOU Q, ZHU Z M, WANG X, et al. The effect of a pre-existing crack on a running crack in brittle material under dynamic loads [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(11): 2544–2557. DOI: 10.1111/ffe.13105.
    [93] YANG R S, XU P, YUE Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode Ⅰ running crack using digital dynamic caustics method [J]. Engineering Fracture Mechanics, 2016, 161: 63–75. DOI: 10.1016/j.engfracmech.2016.04.042.
    [94] 邓帅, 朱哲明, 王磊, 等. 原岩应力对裂纹动态断裂行为的影响规律研究 [J]. 岩石力学与工程学报, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.

    DENG S, ZHU Z M, WANG L, et al. Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.
    [95] XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: 10.1016/j.jrmge.2014.07.008.
    [96] HAUSER F E. Techniques for measuring stress-strain relations at high strain rates [J]. Experimental Mechanics, 1966, 6(8): 395–402. DOI: 10.1007/BF02326284.
    [97] PERKINS R D, GREEN S J. High speed photography in dynamic materials testing [J]. Review of Scientific Instruments, 1968, 39(8): 1209–1210. DOI: 10.1063/1.1683621.
    [98] CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-Hopkinson-bar tests on rock under confining pressure [J]. Experimental Mechanics, 1972, 12(11): 508–513. DOI: 10.1007/BF02320747.
    [99] FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: 10.1007/BF02323102.
    [100] SONG B, CHEN W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1177/0014485104048911.
    [101] LI X B, HONG L, YIN T B, et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure [J]. Journal of Central South University of Technology, 2008, 15(2): 218–223. DOI: 10.1007/s11771-008-0042-7.
    [102] LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [103] DAI F, CHEN R, IQBAL M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 606–613. DOI: 10.1016/j.ijrmms.2010.04.002.
    [104] DAI F, XIA K, ZHENG H, et al. Determination of dynamic rock mode-Ⅰ fracture parameters using cracked chevron notched semi-circular bend specimen [J]. Engineering Fracture Mechanics, 2011, 78(15): 2633–2644. DOI: 10.1016/j.engfracmech.2011.06.022.
    [105] CADONI E, ALBERTINI C. Modified Hopkinson bar technologies applied to the high strain rate rock tests [M]//ZHOU Y X, ZHAO J. Advances in Rock Dynamics and Applications. London: CRC Press, 2011: 79–104. DOI: 10.1201/b11077.
    [106] 方秦, 阮征, 翟超辰, 等. 围压与温度共同作用下盐岩的SHPB实验及数值分析 [J]. 岩石力学与工程学报, 2012, 31(9): 1756–1765.

    FANG Q, RUAN Z, ZHAI C C, et al. Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1756–1765.
    [107] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.

    WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
    [108] LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 403–420. DOI: 10.1007/s00603-018-1586-y.
    [109] QIU H, ZHU Z M, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete [J]. Engineering Fracture Mechanics, 2020, 228: 106798. DOI: 10.1016/j.engfracmech.2019.106798.
    [110] 邹宝平, 罗战友, 徐付军, 等. 热-水-力耦合条件下深部砂岩冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.

    ZOU B P, LUO Z Y, XU F J, et al. Experimental study on impact dynamic characteristics of deep sandstone under thermal-hydraulic-mechanical coupling conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.
    [111] HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
    [112] XIE H P, ZHU J B, ZHOU T, et al. Novel three-dimensional rock dynamic tests using the true triaxial electromagnetic Hopkinson bar system [J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 2079–2086. DOI: 10.1007/s00603-020-02344-4.
    [113] JIANG Y F, ZHOU L, ZHU Z M, et al. Research on dynamic cracking properties of cracked rock mass under the effect of thermal treatment [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103580. DOI: 10.1016/j.tafmec.2022.103580.
    [114] LIU X Y, LIU Y, DAI F, et al. Tensile mechanical behavior and fracture characteristics of sandstone exposed to freeze-thaw treatment and dynamic loading [J]. International Journal of Mechanical Sciences, 2022, 226: 107405. DOI: 10.1016/j.ijmecsci.2022.107405.
    [115] WANG L J, FAN L F, DU X L. Non-attenuation behavior of stress wave propagation through a rock mass [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 3807–3815. DOI: 10.1007/s00603-022-02843-6.
    [116] 王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.

    WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
    [117] WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [118] WANG M, WANG F, ZHU Z M, et al. Modelling of crack propagation in rocks under SHPB impacts using a damage method [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(8): 1699–1710. DOI: 10.1111/ffe.13012.
    [119] WANG F, WANG M. Effect of holes on dynamic crack propagation under impact loading [J]. Applied Sciences, 2020, 10(3): 1122. DOI: 10.3390/app10031122.
    [120] 王兴渝, 朱哲明, 邱豪, 等. 冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究 [J]. 岩石力学与工程学报, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.

    WANG X Y, ZHU Z M, QIU H, et al. Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.
    [121] WANG X Y, ZHU Z M, ZHOU L, et al. Study on the effects of joints orientation and strength on failure behavior in shale specimen under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104162. DOI: 10.1016/j.ijimpeng.2022.104162.
    [122] QIU H, ZHU Z M, WANG F, et al. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load [J]. Engineering Fracture Mechanics, 2020, 240: 107202. DOI: 10.1016/j.engfracmech.2020.107202.
    [123] LIU K, ZHANG Q B, ZHAO J. Dynamic increase factors of rock strength [C]//LI C, LI X, ZHANG Z X. Rock Dynamics and Applications 3: Proceedings of the 3rd International Confrence on Rock Dynamics and Applications (RocDyn-3). London: CRC Press, 2018: 169−174. DOI: 10.1201/9781351181327.
    [124] 王伟, 王奇智, 石露, 等. 爆炸荷载下岩石Ⅰ型微裂纹动态扩展研究 [J]. 岩石力学与工程学报, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.

    WANG W, WANG Q Z, SHI L, et al. Dynamic extension of mode Ⅰ microcracks of rocks under blasting loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.
    [125] LIU C Y, YANG J X, YU B. Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock [J]. International Journal of Mining Science and Technology, 2017, 27(5): 795–801. DOI: 10.1016/j.ijmst.2017.07.016.
    [126] HE C L, YANG J, YU Q. Laboratory study on the dynamic response of rock under blast loading with active confining pressure [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 101–108. DOI: 10.1016/j.ijrmms.2018.01.011.
    [127] PENG J Y, ZHANG F P, YAN G L, et al. Experimental study on rock-like materials fragmentation by electric explosion method under high stress condition [J]. Powder Technology, 2019, 356: 750–758. DOI: 10.1016/j.powtec.2019.09.001.
    [128] 闫广亮, 张凤鹏, 郝红泽, 等. 电爆炸破碎岩石类脆性材料实验方法与应用 [J]. 煤炭学报, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.

    YAN G L, ZHANG F P, HAO H Z, et al. Experimental method and application of electrical explosion for breaking rock-like brittle materials [J]. Journal of China Coal Society, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.
    [129] LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [130] LIU R F, ZHU Z M, LI Y X, et al. Study of rock dynamic fracture toughness and crack propagation parameters of four brittle materials under blasting [J]. Engineering Fracture Mechanics, 2020, 225: 106460. DOI: 10.1016/j.engfracmech.2019.04.034.
    [131] WAN D Y, ZHU Z M, LIU R F, et al. Measuring method of dynamic fracture toughness of mode Ⅰ crack under blasting using a rectangle specimen with a crack and edge notches [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104104. DOI: 10.1016/j.ijrmms.2019.104104.
    [132] 李盟, 朱哲明, 刘瑞峰, 等. 孔洞对爆生裂纹动态扩展行为影响研究 [J]. 岩土工程学报, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.

    LI M, ZHU Z M, LIU R F, et al. Influences of holes on dynamic propagation behaviors of blasting cracks [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.
    [133] QIU P, YUE Z W, YANG R S. Experimental study on mode-Ⅰ and mixed-mode crack propagation under tangentially incident P waves, S waves and reflected waves in blasts [J]. Engineering Fracture Mechanics, 2021, 247: 107664. DOI: 10.1016/j.engfracmech.2021.107664.
    [134] CHEN C, YANG R S, XU P, et al. Experimental study on the interaction between oblique incident blast stress wave and static crack by dynamic photoelasticity [J]. Optics and Lasers in Engineering, 2022, 148: 106764. DOI: 10.1016/j.optlaseng.2021.106764.
    [135] QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821. DOI: 10.1016/j.ijimpeng.2021.103821.
    [136] YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. DOI: 10.1016/j.engfracmech.2017.08.037.
    [137] QIU P, YUE Z W, YANG R S, et al. Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method [J]. Engineering Fracture Mechanics, 2019, 212: 164–179. DOI: 10.1016/j.engfracmech.2019.03.018.
    [138] XU P, YANG R S, GUO Y, et al. Investigation of the effect of the blast waves on the opposite propagating crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104818. DOI: 10.1016/j.ijrmms.2021.104818.
    [139] 刘瑞峰, 朱哲明, 刘邦, 等. 爆炸载荷下砂岩动态断裂特性的试验研究 [J]. 岩石力学与工程学报, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.

    LIU R F, ZHU Z M, LIU B, et al. Experimental study on dynamic fracture characteristics of sandstones under blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.
    [140] LIU R F, ZHU Z M, LI M, et al. Study on dynamic fracture behavior of mode Ⅰ crack under blasting loads [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 47–57. DOI: 10.1016/j.soildyn.2018.11.009.
    [141] XU P, YANG R S, GUO Y, et al. Investigation of the blast-induced crack propagation behavior in a material containing an unfilled joint [J]. Applied Sciences, 2020, 10(13): 4419. DOI: 10.3390/app10134419.
    [142] GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic failure of composite strips under reverse ballistic impact [J]. International Journal of Mechanical Sciences, 2022, 234: 107700. DOI: 10.1016/j.ijmecsci.2022.107700.
    [143] GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic fracture of glass fiber-reinforced ductile polymer matrix composites and loading rate effect [J]. Composites Part B: Engineering, 2022, 235: 109754. DOI: 10.1016/j.compositesb.2022.109754.
    [144] GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. DOI: 10.1016/j.ndteint.2022.102636.
  • 期刊类型引用(3)

    1. 赵光明,秦志宏,孟祥瑞. 动载循环作用下砂岩的动态力学响应及破坏特征. 采矿与岩层控制工程学报. 2025(01): 22-37 . 百度学术
    2. 闻磊,冯文杰,李明烨,寇子龙,张飞,于俊红. 不同加载条件下含裂隙岩石裂纹扩展特征及能量演化机制试验研究. 实验力学. 2025(01): 30-48 . 百度学术
    3. 马泗洲,蒋海明,周朝兰,王明洋,刘科伟. 围压与爆破耦合作用下节理岩体裂纹的扩展行为与影响因素. 爆炸与冲击. 2025(06): 6-23 . 本站查看

    其他类型引用(9)

  • 加载中
推荐阅读
露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究
费鸿禄 等, 爆炸与冲击, 2025
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
围压与爆破耦合作用下节理岩体裂纹的扩展行为与影响因素
马泗洲 等, 爆炸与冲击, 2025
近场近地爆炸下建筑柱爆炸荷载分布规律及简化模型
喻君 等, 爆炸与冲击, 2024
岩石爆破损伤演化与动力响应的空孔效应
李涛 等, 高压物理学报, 2025
残矿回采挤压爆破参数优化的数值模拟
周朝兰 等, 高压物理学报, 2023
高地应力下岩体的爆破损伤及能量特性
梁瑞 等, 高压物理学报, 2022
Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: a review
Nasaj, Mona et al., INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024
Study on the minimum safe thickness of water inrush prevention in karst tunnel under the coupling effect of blasting power and water pressure
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Inversion and optimization of co2+o2 in situ leaching of blasting-stimulated sandstone-type uranium deposits
PHYSICS OF FLUIDS, 2025
Powered by
图(24) / 表(2)
计量
  • 文章访问数:  1251
  • HTML全文浏览量:  438
  • PDF下载量:  188
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-05-05
  • 刊出日期:  2023-08-31

目录

/

返回文章
返回