接触爆炸作用下混凝土墩体的易损性研究

马世鑫 纪杨子燚 钟明寿 李向东

马世鑫, 纪杨子燚, 钟明寿, 李向东. 接触爆炸作用下混凝土墩体的易损性研究[J]. 爆炸与冲击, 2023, 43(7): 073201. doi: 10.11883/bzycj-2022-0538
引用本文: 马世鑫, 纪杨子燚, 钟明寿, 李向东. 接触爆炸作用下混凝土墩体的易损性研究[J]. 爆炸与冲击, 2023, 43(7): 073201. doi: 10.11883/bzycj-2022-0538
MA Shixin, JI Yangziyi, ZHONG Mingshou, LI Xiangdong. Study on the vulnerability of concrete obstacle under contact explosion[J]. Explosion And Shock Waves, 2023, 43(7): 073201. doi: 10.11883/bzycj-2022-0538
Citation: MA Shixin, JI Yangziyi, ZHONG Mingshou, LI Xiangdong. Study on the vulnerability of concrete obstacle under contact explosion[J]. Explosion And Shock Waves, 2023, 43(7): 073201. doi: 10.11883/bzycj-2022-0538

接触爆炸作用下混凝土墩体的易损性研究

doi: 10.11883/bzycj-2022-0538
详细信息
    作者简介:

    马世鑫(1999- ),男,博士研究生,sxin_ma@njust.edu.cn

    通讯作者:

    李向东(1969- ),男,博士,教授,lixiangd@njust.edu.cn

  • 中图分类号: O389

Study on the vulnerability of concrete obstacle under contact explosion

  • 摘要: 为评估柱形装药接触爆炸对混凝土墩体的破坏能力,采用试验与数值模拟相结合的方法研究了接触爆炸作用下混凝土墩体的易损性,提出了用等毁伤曲线和易损面积评估混凝土墩体易损性的方法,得到了接触爆炸作用下墩体顶面和侧面的毁伤区域特征及装药质量和装药放置位置对墩体毁伤的影响规律。通过建立易损面积的计算模型,分别得到了顶面和侧面接触爆炸作用下墩体不同级别毁伤的易损面积随装药质量的变化曲线,在此基础上比较了顶面和侧面接触爆炸时墩体的易损性差异。研究结果表明:接触爆炸作用下,墩体顶面的毁伤区域近似为正方形,其中心与墩体顶面中心重合;墩体侧面的毁伤区域近似为圆角梯形,其中心位于侧面几何中心下方约10 cm处。装药质量在0.5~10.79 kg之间时,侧面接触爆炸更容易破坏墩体。研究成果可为混凝土障碍的破除、破障弹设计及效能评估提供支持和指导。
  • 图  1  柱形装药和混凝土墩体结构及试验布置示意图

    Figure  1.  Structure of cylindrical charge and concrete obstacle and schematic diagram of the test layout

    图  2  T-1试验中混凝土墩体的破坏情况

    Figure  2.  The damage of the concrete obstacle in test T-1

    图  3  T-2试验中混凝土墩体的破坏情况

    Figure  3.  The damage of the concrete obstacle in test T-2

    图  4  T-3试验中混凝土墩体的破坏情况

    Figure  4.  The damage of the concrete obstacle in test T-3

    图  5  T-4试验中混凝土墩体的破坏情况

    Figure  5.  The damage of the concrete obstacle in test T-4

    图  6  T-5试验中混凝土墩体的破坏情况

    Figure  6.  The damage of the concrete obstacle in test T-5

    图  7  T-6试验中混凝土墩体的破坏情况

    Figure  7.  The damage of the concrete obstacle in test T-6

    图  8  不同试验工况下装药质量与混凝土墩体的残余高度和碎块数量的关系

    Figure  8.  The relationship between the charge mass and the broken residual height of the concrete obstacle and the number of its pieces

    图  9  装药置于混凝土墩体顶面或侧面的典型位置

    Figure  9.  The typical charge positions on the top or side surface of the concrete obstacle

    图  10  柱形装药和混凝土墩体接触爆炸过程的有限元模型

    Figure  10.  The finite element model of contact explosion of cylindrical charge and concrete obstacle

    图  11  1.0 kg装药顶面接触爆炸时试验结果与数值模拟结果对比

    Figure  11.  Comparison of test and numerical results for obstacle under top contact explosion of 1.0 kg charge

    图  12  1.5 kg装药顶面接触爆炸时试验结果与数值模拟结果对比

    Figure  12.  Comparison of test and numerical results for obstacle under top contact explosion of 1.5 kg charge

    图  13  2.0 kg装药顶面接触爆炸时试验结果与数值模拟结果对比

    Figure  13.  Comparison of test and numerical results for obstacle under top contact explosion of 2.0 kg charge

    图  14  2.5 kg装药顶面接触爆炸时试验结果与数值模拟结果对比

    Figure  14.  Comparison of test and numerical results for obstacle under top contact explosion of 2.5 kg charge

    图  15  3.0 kg装药顶面接触爆炸时试验结果与数值模拟结果对比

    Figure  15.  Comparison of test and numerical results for obstacle under top contact explosion of 3.0 kg charge

    图  16  3.0 kg装药侧面接触爆炸时试验结果与数值模拟结果对比

    Figure  16.  Comparison of test and numerical results for obstacle under side contact explosion of 3.0 kg charge

    图  17  柱形装药在混凝土墩体顶面中心爆炸时墩体对称界面von Mises应力传播过程

    Figure  17.  Development of von Mises stress on the concrete obstacle symmetrical interface when the cylindrical charge explodes at the center of the top surface

    图  18  柱形装药在混凝土墩体顶面中心爆炸时墩体对称界面损伤过程

    Figure  18.  Development of damage on the concrete obstacle symmetrical interface when the cylindrical charge explodes at the center of the top surface

    图  19  柱形装药在混凝土墩体侧面几何中心爆炸时墩体对称界面von Mises应力传播过程

    Figure  19.  Development of von Mises stress on the symmetrical interface of the concrete obstacle when the cylindrical charge explodes at the geometrical center of the side surface

    图  20  柱形装药在混凝土墩体侧面几何中心爆炸时墩体对称界面损伤过程

    Figure  20.  Development of damage on the symmetrical interface of the concrete obstacle when the cylindrical charge explodes at the geometrical center of the side surface

    图  21  柱形装药放置位置及顶面网格划分示意图

    Figure  21.  Schematic diagram of cylindrical charge position and grid division of the top surface

    图  22  顶面接触爆炸作用下墩体的等毁伤曲线

    Figure  22.  Damage iso-curves of concrete obstacle under top contact explosion

    图  23  侧面接触爆炸作用下墩体的等毁伤曲线

    Figure  23.  Damage iso-curves of concrete obstacle under side contact explosion

    图  24  顶面接触爆炸作用下墩体的易损面积与装药质量之间的关系

    Figure  24.  The relationship between the vulnerable area of concrete obstacle and the charge mass under top contact explosion

    图  25  侧面接触爆炸作用下混凝土墩体的易损面积与装药质量之间的关系

    Figure  25.  The relationship between the vulnerable area of concrete obstacle and the charge mass under side contact explosion

    图  26  混凝土墩体重度毁伤易损面积占比与装药质量的关系

    Figure  26.  The relationship between the sever damage area radio of the concrete obstacle and the charge mass

    表  1  试验方案

    Table  1.   Experiment scheme

    试验编号装药放置位置装药质量/kg
    T-1顶面中心1.0
    T-2顶面中心1.5
    T-3顶面中心2.0
    T-4顶面中心2.5
    T-5顶面中心3.0
    T-6侧面几何中心3.0
    下载: 导出CSV

    表  2  B炸药材料参数[16]

    Table  2.   The material parameters of composition B[16]

    ρ/(g·cm−3)A/GPaB/GPaR1R1ω
    1.7175247.674.21.10.34
    下载: 导出CSV

    表  3  空气材料参数[17]

    Table  3.   The material parameters of air[17]

    ρ/(kg·m−3)C4C5E0/(μJ·m−3)
    1.290.40.42.5
    下载: 导出CSV

    表  4  试验和数值模拟得到的混凝土残余高度对比

    Table  4.   The comparison of the residual height of concrete obstacle between numerical simulation and test

    试验编号残余高度/m误差/%
    试验结果模拟结果
    T-10.720.67−6.94
    T-20.640.651.56
    T-30.610.621.64
    T-40.570.52−8.77
    T-50.540.50−7.41
    T-60.270.26−3.70
    下载: 导出CSV

    表  5  顶面典型位置接触爆炸时墩体残余高度数值计算结果

    Table  5.   Numerical simulation results of obstacle residual height under top contact explosion at typical position

    装药质量/kg残余高度/m
    Point OPoint KPoint LPoint MPoint NPoint P
    1.00.670.710.760.750.780.79
    1.50.650.680.700.700.760.78
    2.00.620.650.690.700.750.76
    2.50.520.600.680.650.670.75
    3.00.500.550.590.620.670.73
    4.00.430.470.540.570.600.70
    5.00.400.420.530.550.580.70
    6.00.380.410.480.510.560.67
    下载: 导出CSV

    表  6  侧面典型位置接触爆炸时墩体残余高度数值计算结果

    Table  6.   Numerical simulation results of obstacle residual height under side contact explosion at typical position

    装药质量/kg残余高度/m
    Point CPoint DPoint EPoint FPoint GPoint H
    1.00.480.550.380.440.330.42
    1.50.450.490.340.410.290.38
    2.00.430.460.300.390.260.35
    2.50.410.440.270.360.230.33
    3.00.390.410.260.340.210.31
    4.00.350.370.190.300.170.28
    5.00.320.330.150.260.140.25
    6.00.290.290.120.230.110.22
    下载: 导出CSV
  • [1] 张利, 钟世威, 肖艳文, 等. 爆炸成型弹丸侵彻轨条砦毁伤行为研究 [J]. 兵器装备工程学报, 2022, 43(7): 140–144. DOI: 10.11809/bqzbgcxb2022.07.021.

    ZHANG L, ZHONG S W, XIAO Y W, et al. Research on damage behavior of explosively formed projectiles penetrating rail stockade [J]. Journal of Ordnance Equipment Engineering, 2022, 43(7): 140–144. DOI: 10.11809/bqzbgcxb2022.07.021.
    [2] 高源, 王树山, 梁振刚, 等. 破障火箭弹终点毁伤效能评估研究 [J]. 火力与指挥控制, 2020, 45(12): 87–91. DOI: 10.3969/j.issn.1002-0640.2020.12.016.

    GAO Y, WANG S S, LIANG Z G, et al. Evaluation of terminal damage effectiveness of concrete-piercing rocket projectile [J]. Fire Control Command Control, 2020, 45(12): 87–91. DOI: 10.3969/j.issn.1002-0640.2020.12.016.
    [3] GRISARO H Y, BENAMOU D, MITELMAN A. Field tests of fiber reinforced concrete slabs subjected to close-in and contact detonations of high explosives [J]. International Journal of Impact Engineering, 2022, 162: 104136. DOI: 10.1016/j.ijimpeng.2021.104136.
    [4] LI Z, LIU Y, YAN J B, et al. Experimental investigation of p-section concrete beams under contact explosion and close-in explosion conditions [J]. Defence Technology, 2018, 14(5): 540–549. DOI: 10.1016/j.dt.2018.07.025.
    [5] YANG G D, WANG G H, LU W B, et al. Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions [J]. Marine Structures, 2019, 66: 242–257. DOI: 10.1016/j.marstruc.2019.04.009.
    [6] LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion [J]. Engineering Structures, 2015, 102: 395–408. DOI: 10.1016/j.engstruct.2015.08.032.
    [7] REMENNIKOV A M, YOUSSEF J, NGO T D, et al. Breach diameter analysis of concrete panels subjected to contact charge detonations [J]. International Journal of Impact Engineering, 2018, 120: 95–109. DOI: 10.1016/j.ijimpeng.2018.05.011.
    [8] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.

    YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion and Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
    [9] 张强, 余曜, 迟德建, 等. 柱形装药接触爆炸条件下对钢筋混凝土板的毁伤规律研究 [J]. 空天防御, 2020, 3(2): 16–23. DOI: 10.3969/j.issn.2096-4641.2020.02.003.

    ZHANG Q, YU Y, CHI D J, et al. Study on the damage effect of cylindrical charge on reinforced concrete slabs [J]. Air & Space Defense, 2020, 3(2): 16–23. DOI: 10.3969/j.issn.2096-4641.2020.02.003.
    [10] 郝礼楷, 顾文彬, 邹绍昕, 等. 空气中集团装药对混凝土墩接触爆炸毁伤研究 [J]. 兵器装备工程学报, 2022, 43(5): 97–102. DOI: 10.11809/bqzbgcxb2022.05.016.

    HAO L K, GU W B, ZOU S X, et al. Damage study of concrete obstacle caused by air contact explosion of group charge [J]. Journal of Ordnance Equipment Engineering, 2022, 43(5): 97–102. DOI: 10.11809/bqzbgcxb2022.05.016.
    [11] 刘路. 不同防护方式下钢筋混凝土墩柱的抗爆性能试验研究 [D]. 南京: 东南大学, 2016: 46–49. DOI: 10.7666/d.Y3143068.

    LIU L. Experimental study of differently protective RC pipers under blast loading [D]. Nanjing: Southeast University, 2016: 46–49. DOI: 10.7666/d.Y3143068.
    [12] DUA A, BRAIMAH A, KUMAR M. Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects [J]. Engineering Structures, 2020, 205: 109891. DOI: 10.1016/j.engstruct.2019.109891.
    [13] 赵跃堂, 胡康, 刘绍鎏, 等. 混凝土结构接缝处接触爆炸成坑效应研究 [J]. 振动与冲击, 2021, 40(14): 245–251. DOI: 10.13465/j.cnki.jvs.2021.14.032.

    ZHAO Y T, HU K, LIU S L, et al. Cratering effect for a contact explosion at the joint of concrete structures [J]. Journal of Vibration and Shock, 2021, 40(14): 245–251. DOI: 10.13465/j.cnki.jvs.2021.14.032.
    [14] 柳锦春, 方秦, 张亚栋, 等. 爆炸荷载作用下内衬钢板的混凝土组合结构的局部效应分析 [J]. 兵工学报, 2004, 25(6): 773–776. DOI: 10.3321/j.issn:1000-1093.2004.06.027.

    LIU J C, FANG Q, ZHANG Y D, et al. Analysis of local effects on steel-backed concrete composite structures under blast loading [J]. Acta Armamentarii, 2004, 25(6): 773–776. DOI: 10.3321/j.issn:1000-1093.2004.06.027.
    [15] 许庆新. 基于SPH方法的冲击动力学若干问题研究 [D]. 上海: 上海交通大学, 2009: 80–81.

    XU Q X. Study of some impact dynamics problems based on smoothed particle hydrodynamics method [D]. Shanghai: Shanghai Jiao Tong University, 2009: 80–81.
    [16] ŻOCHOWSKI P, WARCHOŁ R, MISZCZAK M, et al. Experimental and numerical study on the PG-7VM warhead performance against high-hardness armor steel [J]. Materials, 2021, 14(11): 3020. DOI: 10.3390/ma14113020.
    [17] 杨程风, 闫俊伯, 刘彦, 等. 接触爆炸载荷下波纹钢加固钢筋混凝土板毁伤特征分析 [J]. 北京理工大学学报, 2022, 42(5): 453–462. DOI: 10.15918/j.tbit1001-0645.2021.108.

    YANG C F, YAN J B, LIU Y, et al. Damage characteristics of corrugated steel concrete slab under contact explosion load [J]. Transactions of Beijing Institute of Technology, 2022, 42(5): 453–462. DOI: 10.15918/j.tbit1001-0645.2021.108.
    [18] LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008.
    [19] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [20] 胡嘉辉, 吴昊, 方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟 [J]. 振动与冲击, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.

    HU J H, WU H, FANG Q. Numerical simulation of damage and dynamic response of masonry infilled wall under near zone explosion [J]. Journal of Vibration and Shock, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.
    [21] BORRVALL T, RIEDEL W. The RHT concrete model in LS-DYNA [C]//Proceedings of the 8th European LS-DYNA User Conference. Strasbourg, France, 2011.
  • 加载中
图(26) / 表(6)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  89
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2023-04-17
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回