耦合装药条件下不同孔径孔壁冲击压力的阶段特征

楼晓明 陈诗伟 李广斌 牛明远 林日宗 姚炳金

楼晓明, 陈诗伟, 李广斌, 牛明远, 林日宗, 姚炳金. 耦合装药条件下不同孔径孔壁冲击压力的阶段特征[J]. 爆炸与冲击, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547
引用本文: 楼晓明, 陈诗伟, 李广斌, 牛明远, 林日宗, 姚炳金. 耦合装药条件下不同孔径孔壁冲击压力的阶段特征[J]. 爆炸与冲击, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547
LOU Xiaoming, CHEN Shiwei, LI Guangbin, NIU Mingyuan, LIN Rizong, YAO Bingjin. Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions[J]. Explosion And Shock Waves, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547
Citation: LOU Xiaoming, CHEN Shiwei, LI Guangbin, NIU Mingyuan, LIN Rizong, YAO Bingjin. Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions[J]. Explosion And Shock Waves, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547

耦合装药条件下不同孔径孔壁冲击压力的阶段特征

doi: 10.11883/bzycj-2022-0547
基金项目: 国家自然科学基金(51679093, 51374112)
详细信息
    作者简介:

    楼晓明(1972- ),男,博士,教授,331261323@qq.com

    通讯作者:

    陈诗伟(1999- ),男,硕士研究生,1291178186@qq.com

  • 中图分类号: O383

Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions

  • 摘要: 为合理减小振动并确定单孔破坏的范围,需掌握不同孔径孔壁的冲击压力规律。通过分析孔壁在爆轰作用下的运动过程,构建了孔壁在受到爆炸冲击波时不可压缩流体动力膨胀、破岩粉碎和动态膨胀等3个阶段的简化计算模型,分别确定了各阶段的孔壁压力与时间的分段函数。基于理想气体膨胀方程,确定了孔壁峰值压力的理论放大系数,在数学上统一了孔壁压力变化的阶段特征,得到了炮孔耦合装药孔壁冲击压力孔壁压力特征变化曲线。依托LS-DYNA数值模拟软件和现场工业模型试验,采用数值分析和超动态应变测试模型试验的方法对计算模型结果进行对比分析,得到了耦合装药条件下5种不同孔径(51~200 mm)的孔壁数值分析历程点的冲击压力变化曲线,试验验证了孔壁峰值压力的理论放大系数,系数误差控制在了0.7%~6.4%之间。对比分析了76、90 mm两种特定工况下的理论计算、数值分析历程点和模型试验测点数据,结果表明:理论分段函数能够有效拟合数值分析和模型试验数据,峰值压力的误差分别为6.8%、4.9%,分段时间的误差分别为7.6%、4.8%。
  • 图  1  岩体破坏阶段图

    Figure  1.  Rock mass destruction stage diagram

    图  2  爆洞塑性膨胀破坏阶段

    Figure  2.  Blast plastic expansion destruction stage

    图  3  岩体被粉碎阶段

    Figure  3.  Rock mass crushing stage

    图  4  理论孔壁压力分段函数

    Figure  4.  Diagram of the theoretical pore wall pressure segmentation function

    图  5  计算模型剖面图

    Figure  5.  Computational model profile

    图  6  不同工况下的孔壁压力时程曲线

    Figure  6.  Time history curves of hole wall pressure under different working conditions

    图  7  成型应变砖

    Figure  7.  Formed strain brick

    图  8  应变片连接

    Figure  8.  Strain gauge connection

    图  9  应变砖布置示意图

    Figure  9.  Schematic diagram of strain brick layout

    图  10  实验现场图

    Figure  10.  Pictures of the experiment site

    图  11  膨胀半径与特征时间的拟合关系

    Figure  11.  Relationship between expansion radius and time

    图  12  不同孔径时模拟与理论计算孔壁压力时程曲线对比

    Figure  12.  Comparison of the pore wall pressure histories obtained from numerical simulation and theoretical calculation

    表  1  炸药建模参数

    Table  1.   Mathematical modeling parameters of explosives

    炸药名称密度ρ/(kg·m−3)爆速D/(m·s−1)C-J压力/GPaA/GPaB/GPaR1R2ω初始比内能E0/(kJ·m−3)初始体积V
    粒状铵油90026001.5214710.074.050.950.307.11
    下载: 导出CSV

    表  2  围岩(片岩)建模参数

    Table  2.   Surrounding rock modeling parameters

    密度ρ/(kg·m−3)剪切模量G/GPa完整归一化强度A/GPa断裂归一化强度B/GPa应变强度参数C/GPa断裂强度参数M/GPa
    2 9450.19080.780.650.020.45
    完整强度参数N/GPa应变率$\dot \varepsilon $/s−1抗拉强度σt/GPa最大断裂归一化强度σs/GPaHugoniot弹性极限Hugoniot弹性极限压力分量
    0.4510−60.02920.350.02750.01945
    断裂塑性应变参数D1断裂塑性应变指数D2体积模量K1/GPa第二压力系数K2第三压力系数K3失效标准
    1.157.0317.056.50
    下载: 导出CSV

    表  3  炮孔堵塞材料(土)建模参数

    Table  3.   Modeling parameters of hole blockage

    密度ρ/(kg·m−3)剪切模量G/GPa卸载体积模量Kx/GPa屈服函数常数A0屈服函数常数A1屈服函数常数A2
    1 8000.06385783.4×10−137.033×10−70.3
    断裂压力pc/kN装卸载路径初始压力pi体积应变ε1体积应变ε2体积应变ε3
    −6.9000−0.104−0.161
    体积应变ε4体积应变ε5体积应变ε6体积应变ε7体积应变ε8体积应变ε9
    −0.192−0.224−0.246−0.271−0.283−0.9
    体积应变ε10体积应变ε1对应的
    压力p1/N
    体积应变ε2对应的
    压力p2/N
    体积应变ε3对应的
    压力p3/N
    体积应变ε4对应的
    压力p4/N
    −0.400.20.40.6
    下载: 导出CSV

    表  4  流固耦合空气建模参数

    Table  4.   Fluid-structure interaction air modeling parameters

    密度ρ/(kg·m−3)多项式系数C0多项式系数C1多项式系数C2多项式系数C3多项式系数C4
    1.250.3440.78$ 0 $$ 0 $1.4
    下载: 导出CSV

    表  5  不同孔径耦合装药炮孔压力模型试验测试结果

    Table  5.   Results of coupling charge pressure model tests with different hole diameters

    试验编号炮孔直径/mm炸药质量/g峰值电压/V峰值应变/10−6峰值时刻/μs峰值压力/GPa
    17617205.76528058.2551147.545
    27617205.93228871.0441127.763
    37617204.89723833.6991006.409
    49025447.54236706.9141609.871
    59025447.36335835.7211429.636
    69025447.43336176.4111489.728
    下载: 导出CSV

    表  6  孔壁膨胀峰值特征点数据

    Table  6.   Pore wall expansion peak feature point data

    直径/mm峰值压力/GPa误差%Zω
    理论模拟试验模拟试验
    513.8523.660 5.2450.95142.532
    767.5707.0907.2396.3414.3730.95674.453
    909.6089.1309.7455.2371.4260.95726.317
    11512.60512.7000.7480.96028.287
    20021.23922.7006.4350.972613.964
    下载: 导出CSV

    表  7  直径76 mm时孔壁压力及时刻误差分析

    Table  7.   Error analysis of the hole wall pressure and time for a diameter of 76 mm

    类别峰值位移/mm峰值时刻/μs峰值压力/GPa分段时刻/μs分段压力/GPa
    理论值1.810115.0007.090304.0001.300
    模拟值1.720120.0007.570329.0001.459
    试验值127.6677.239333.0001.052
    模拟误差/%5.2334.1676.3417.59910.000
    实验误差/%9.9922.1028.70919.077
    下载: 导出CSV

    表  8  直径90 mm时孔壁塑形膨胀阶段压力及时刻

    Table  8.   Error analysis of the hole wall pressure and time for a diameter of 90 mm

    类别峰值位移/mm峰值时刻/μs峰值压力/GPa分段时刻/μs分段压力/GPa
    理论值2.143136.0009.608324.0001.500
    模拟值2.470140.0009.131309.0001.505
    试验值150.0009.745330.0001.052
    模拟误差/%13.2392.5294.9614.8130.333
    试验误差/%10.2941.4261.85229.867
    下载: 导出CSV
  • [1] 刘益超, 郭进平, 李角群, 等. 基于Floyd算法的扇形中深孔爆破布孔优化设计 [J]. 爆破, 2021, 38(1): 64–69, 152. DOI: 10.3963/j.issn.1001-487X.2021.01.010.

    LIU Y C, GUO J P, LI J Q, et al. Optimal design of hole arrangement for fan-shaped medium-length-hole blasting based on Floyd algorithm [J]. Blasting, 2021, 38(1): 64–69, 152. DOI: 10.3963/j.issn.1001-487X.2021.01.010.
    [2] 叶志伟, 陈明, 魏东, 等. 不耦合装药爆破孔壁压力峰值的实验研究 [J]. 爆炸与冲击, 2021, 41(5): 055201. DOI: 10.11883/bzycj-2020-0004.

    YE Z W, CHEN M, WEI D, et al. Experimental study on the peak pressure of borehole wall in decoupling charge blasting [J]. Explosion and Shock Waves, 2021, 41(5): 055201. DOI: 10.11883/bzycj-2020-0004.
    [3] FAN L F, WANG L J, WU Z J. Wave transmission across linearly jointed complex rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 193–200. DOI: 10.1016/j.ijrmms.2018.09.004.
    [4] 唐廷, 尤峰, 葛涛, 等. 爆炸荷载简化形式对弹性区应力场的影响 [J]. 爆破, 2007, 24(2): 7–10, 17. DOI: 10.3963/j.issn.1001-487X.2007.02.002.

    TANG T, YOU F, GE T, et al. Effects of simplified forms of explosion load on stress field of elastic zone during explosion [J]. Blasting, 2007, 24(2): 7–10, 17. DOI: 10.3963/j.issn.1001-487X.2007.02.002.
    [5] 毛从光, 郭晓强, 周辉, 等. 高空核电磁脉冲模拟波形的双指数函数拟合法[J]. 强激光与粒子束, 2004, 16(3): 336–340.

    MAO C G, GUO X Q, ZHOU H, et al. Fitting method of the simulated HEMP waveform by the double-exponential function[J]. High Power Laser and Particle Beams, 2004, 16(3): 336–340.
    [6] STARFIELD A M, PUGLIESE J M. Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(1): 65–77. DOI: 10.1016/0148-9062(68)90023-5.
    [7] JONG Y, LEE C, JEON S, et al. Numericalmodeling of the circular-cut using particle flaw code[C]//Proceedings of the 31st Annular Conference of Explosives and Blasting Technique. Orlando: CD-ROM, 2005.
    [8] 张馨, 孙金山, 张湘平, 等. 钻孔爆破炮孔孔壁压力计算模型 [J]. 爆破, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.

    ZHANG X, SUN J S, ZHANG X P, et al. Calculation model of blasthole pressure [J]. Blasting, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.
    [9] 钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [10] 葛涛, 吴华杰, 陶剑青, 等. 岩石中爆炸破碎区边界参数研究 [J]. 爆破, 2005, 22(3): 5–8. DOI: 10.3963/j.issn.1001-487X.2005.03.002.

    GE T, WU H J, TAO J Q, et al. Study on boundary parameters of crushing zone during explosion in rock [J]. Blasting, 2005, 22(3): 5–8. DOI: 10.3963/j.issn.1001-487X.2005.03.002.
    [11] 冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
    [12] DJORDJEVIC N. Two-component model of blast fragmentation[C]//Proceedings of the 6th International Symposium for Rock Fragmentation by Blasting. South Africa, 1999: 213–219.
    [13] 肖定军, 朱哲明, 蒲传金, 等. 爆炸荷载下青砂岩动态起裂韧度的测试方法 [J]. 爆炸与冲击, 2020, 40(2): 024101. DOI: 10.11883/bzycj-2018-0516.

    XIAO D J, ZHU Z M, PU C J, et al. Study of testing method for dynamic initiation toughness of blue sandstone under blasting loading [J]. Explosion and Shock Waves, 2020, 40(2): 024101. DOI: 10.11883/bzycj-2018-0516.
    [14] LIU K W, LI X H, LI X B, et al. Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges [J]. Journal of Central South University, 2016, 23(11): 2951–2957. DOI: 10.1007/s11771-016-3359-7.
    [15] ОРЛЕНКО Л П. 爆炸物理学(上册)[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 17−30.
    [16] 戴俊. 岩石动力学特性与爆破理论[M]. 2版. 北京: 冶金工业出版社, 2013.
    [17] 楼晓明. 乌龙泉矿裂隙岩体爆破参数优化的研究[D]. 武汉: 武汉科技大学, 2004.
    [18] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000.
    [19] CHI L Y, ZHANG Z X, AALBERG A, et al. Measurement of shock pressure and shock-wave attenuation near a blast hole in rock [J]. International Journal of Impact Engineering, 2019, 125: 27–38. DOI: 10.1016/j.ijimpeng.2018.11.002.
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  81
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 修回日期:  2023-04-20
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回