Numerical and theoretical investigations on crashworthiness of star-shaped hybrid multi-cell tubes
-
摘要: 为研发轻质高效的能量吸收装置,提出了基于多边形截面与星形截面混合设计的星形混合多胞管。采用数值模拟方法研究了星形混合多胞管在轴向加载条件下的吸能特性和变形模式,并结合简化超折单元理论推导了该管的平均碰撞力理论公式。研究结果表明,星形混合多胞管的多边形截面与星形截面之间产生了协同效应,额外吸收了更多的冲击动能:当多边形边数N=6时,混合截面的协同性最好;当N=8时,该管的能量吸收效率最高。在此基础上,进一步开展了几何参数分析,发现壁厚对于星形混合多胞管的耐撞性有显著的影响,碰撞力水平随着壁厚的增加而线性增长。此外,星形角度的变化对耐撞性的影响相对较小,碰撞荷载效率和比吸能随着星形角度的增加表现出先增大后减小;当星形角度α=120°时,该管拥有最佳的耐撞性。Abstract: In order to develop a lightweight and efficient energy absorption device, a novel type of the star-shaped hybrid multi-cell (SHM) tubes based on the hybrid design of polygonal cross-section and star-shaped cross-section was proposed. The finite element (FE) models of the polygonal thin-walled (PT) tubes, the star-shaped thin-walled (ST) tubes and the SHM tubes were established by ABAQUS, and the reliability of the FE model was verified by simulating quasi-static axial crush tests. Then, the energy absorption characteristics and deformation modes of three kinds of thin-walled tubes under axial loading conditions were studied by numerical simulation. Based on the simplified super folding element (SSFE) theory, the theoretical formula of the mean crushing force of the SHM tubes under the progressive folding deformation mode is established. The numerical results show that there is a synergistic effect between the polygonal cross-section and the star-shaped cross-section of the SHM tubes. Compared with the PT tubes and the ST tubes, the energy absorption of the SHM tubes is significantly improved. When the number of polygon edges N=6, the cross-section synergistic effect of the SHM tubes is the best, and the energy absorption efficiency is the highest when N=8. Subsequently, the investigations on geometric parameters of the SHM tubes are carried out, and the effects of wall thickness and star angle on crashworthiness are discussed respectively. It is found that the wall thickness has obvious influence on the crashworthiness of the SHM tubes, and the crushing force level increases linearly with the increase of the wall thickness. In addition, the change of the star angle has little influence on crashworthiness. The crushing load efficiency and the specific energy absorption increase first and then decrease with the increase of the star angles. When the star angle α=120°, the SHM tubes has the most excellent crashworthiness. The research results can provide design methods and theoretical guidance for the cross-section design of multi-cell structures.
-
表 1 有限元模型的材料参数
Table 1. Material parameters of finite element model
材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 初始屈服应力/MPa 极限应力/MPa 不锈钢 7800 210 0.3 − − AA6061-O[26] 2700 68.2 0.3 96.8 195.0 表 2 三种薄壁管的耐撞性指标值
Table 2. Crashworthiness indicators of three thin-walled tubes
试件 Fp/kN $ \bar{F} $/kN η/% A/kJ a/(kJ·kg−1) PT4 14.16 6.55 46.25 0.51 8.68 PT6 15.98 9.38 58.69 0.72 11.74 PT8 17.48 12.49 71.47 0.97 15.32 ST4 17.94 10.41 58.03 0.80 11.96 ST6 21.77 16.52 75.87 1.27 17.88 ST8 24.22 20.63 85.20 1.59 21.90 SHM4 43.58 22.15 50.83 1.71 13.64 SHM6 50.99 34.53 67.73 2.67 20.05 SHM8 55.65 43.24 77.70 3.34 24.60 表 3 角单元的角度
Table 3. Angle of corner elements
试件 α/(°) β/(°) γ/(°) SHM4 120 30 90 SHM6 120 60 120 SHM8 120 75 135 -
[1] WANG Z G, ZHANG J, LI Z D, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression [J]. International Journal of Mechanical Sciences, 2020, 186: 105893. DOI: 10.1016/j.ijmecsci.2020.105893. [2] 牛枞, 黄晗, 向枳昕, 等. 仿生多胞薄壁管耐撞性分析及优化 [J]. 爆炸与冲击, 2022, 42(10): 105901. DOI: 10.11883/bzycj-2021-0527.NIU C, HUANG H, XIANG Z X, et al. Crashworthiness analysis and optimization on bio-inspired multi-cell thin-walled tubes [J]. Explosion and Shock Waves, 2022, 42(10): 105901. DOI: 10.11883/bzycj-2021-0527. [3] MING S Z, SONG Z B, ZHOU C H, et al. The energy absorption of long origami-ending tubes with geometrical imperfections [J]. Thin-Walled Structures, 2021, 161: 107415. DOI: 10.1016/j.tws.2020.107415. [4] 刘亚军, 何玉龙, 刘姗姗, 等. 正多边形基多胞薄壁管的吸能特性 [J]. 爆炸与冲击, 2020, 40(7): 071404. DOI: 10.11883/bzycj-2019-0423.LIU Y J, HE Y L, LIU S S, et al. Energy absorption capacity of regular polygon-based multi-cell tubes [J]. Explosion and Shock Waves, 2020, 40(7): 071404. DOI: 10.11883/bzycj-2019-0423. [5] LIU H, CHNG Z X C, WANG G J, et al. Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements [J]. International Journal of Mechanical Sciences, 2021, 210: 106731. DOI: 10.1016/j.ijmecsci.2021.106731. [6] 何强, 王勇辉, 史肖娜, 等. 引入Sierpinski层级特性的新型薄壁多胞管轴向冲击吸能特性 [J]. 爆炸与冲击, 2020, 40(12): 123101. DOI: 10.11883.bzycj/2020-0055.HE Q, WANG Y H, SHI X N, et al. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact [J]. Explosion and Shock Waves, 2020, 40(12): 123101. DOI: 10.11883.bzycj/2020-0055. [7] PALOMBINI F L, DE ARAUJO MARIATH J E, DE OLIVEIRA B F. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo [J]. Thin-Walled Structures, 2020, 155: 106936. DOI: 10.1016/j.tws.2020.106936. [8] TRAN T, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. DOI: 10.1016/j.compstruct.2014.09.019. [9] ZHAO X, ZHU G H, ZHOU C Y, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases [J]. Composite Structures, 2019, 222: 110920. DOI: 10.1016/j.compstruct.2019.110920. [10] DENG X L, LIU W Y, LIN Z Q. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression [J]. Thin-Walled Structures, 2018, 130: 321–331. DOI: 10.1016/j.tws.2018.06.002. [11] TRAN T, BAROUTAJI A. Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading [J]. Engineering Failure Analysis, 2018, 93: 241–256. DOI: 10.1016/j.engfailanal.2018.07.003. [12] WANG Z G, LIU J F, YAO S. On folding mechanics of multi-cell thin-walled square tubes [J]. Composites Part B: Engineering, 2018, 132: 17–27. DOI: 10.1016/j.compositesb.2017.07.036. [13] MA W, LI Z X, XIE S C. Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading [J]. Engineering Structures, 2020, 204: 110069. DOI: 10.1016/j.engstruct.2019.110069. [14] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. DOI: 10.1016/j.compositesb.2019.107496. [15] WU J C, ZHANG Y, ZHANG F, et al. A bionic tree-liked fractal structure as energy absorber under axial loading [J]. Engineering Structures, 2021, 245: 112914. DOI: 10.1016/j.engstruct.2021.112914. [16] FAN H L, LUO Y H, YANG F, et al. Approaching perfect energy absorption through structural hierarchy [J]. International Journal of Engineering Science, 2018, 130: 12–32. DOI: 10.1016/j.ijengsci.2018.05.005. [17] ZHANG L W, BAI Z H, BAI F H. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2018, 122: 42–51. DOI: 10.1016/j.tws.2017.10.010. [18] HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. DOI: 10.1016/j.tws.2021.108315. [19] FU J, LIU Q, LIUFU K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. DOI: 10.1016/j.tws.2018.10.003. [20] GONG C, BAI Z H, WANG Y L, et al. On the crashworthiness performance of novel hierarchical multi-cell tubes under axial loading [J]. International Journal of Mechanical Sciences, 2021, 206: 106599. DOI: 10.1016/j.ijmecsci.2021.106599. [21] XU X, ZHANG Y, WANG J, et al. Crashworthiness design of novel hierarchical hexagonal columns [J]. Composite Structures, 2018, 194: 36–48. DOI: 10.1016/j.compstruct.2018.03.099. [22] VINAYAGAR K, KUMAR A S. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin-Walled Structures, 2017, 112: 184–193. DOI: 10.1016/j.tws.2016.12.008. [23] BIGDELI A, DAMGHANI NOURI M. Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking [J]. Mechanics of Advanced Materials and Structures, 2019, 26(19): 1644–1660. DOI: 10.1080/15376494.2018.1444231. [24] XIONG J, ZHANG Y, SU L, et al. Experimental and numerical study on mechanical behavior of hybrid multi-cell structures under multi-crushing loads [J]. Thin-Walled Structures, 2022, 170: 108588. DOI: 10.1016/j.tws.2021.108588. [25] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. DOI: 10.1115/1.3167137. [26] WANG J, ZHANG Y, HE N, et al. Crashworthiness behavior of Koch fractal structures [J]. Materials & Design, 2018, 144: 229–244. DOI: 10.1016/j.matdes.2018.02.035. [27] LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. DOI: 10.1016/j.ijmecsci.2020.106038. [28] ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression [J]. Thin-Walled Structures, 2013, 68: 156–163. DOI: 10.1016/j.tws.2013.03.014. [29] CHEN H C, ZHANG Y, LIN J M, et al. Crushing responses and optimization of novel sandwich columns [J]. Composite Structures, 2021, 263: 113682. DOI: 10.1016/j.compstruct.2021.113682.