星形混合多胞管的耐撞性数值与理论研究

孔志成 胡俊 郭智平

孔志成, 胡俊, 郭智平. 星形混合多胞管的耐撞性数值与理论研究[J]. 爆炸与冲击, 2023, 43(8): 083101. doi: 10.11883/bzycj-2022-0549
引用本文: 孔志成, 胡俊, 郭智平. 星形混合多胞管的耐撞性数值与理论研究[J]. 爆炸与冲击, 2023, 43(8): 083101. doi: 10.11883/bzycj-2022-0549
KONG Zhicheng, HU Jun, GUO Zhiping. Numerical and theoretical investigations on crashworthiness of star-shaped hybrid multi-cell tubes[J]. Explosion And Shock Waves, 2023, 43(8): 083101. doi: 10.11883/bzycj-2022-0549
Citation: KONG Zhicheng, HU Jun, GUO Zhiping. Numerical and theoretical investigations on crashworthiness of star-shaped hybrid multi-cell tubes[J]. Explosion And Shock Waves, 2023, 43(8): 083101. doi: 10.11883/bzycj-2022-0549

星形混合多胞管的耐撞性数值与理论研究

doi: 10.11883/bzycj-2022-0549
详细信息
    作者简介:

    孔志成(1997- ),男,硕士研究生,770589451@qq.com

    通讯作者:

    胡 俊(1973- ),男,博士,教授,852527982@qq.com

  • 中图分类号: O383

Numerical and theoretical investigations on crashworthiness of star-shaped hybrid multi-cell tubes

  • 摘要: 为研发轻质高效的能量吸收装置,提出了基于多边形截面与星形截面混合设计的星形混合多胞管。采用数值模拟方法研究了星形混合多胞管在轴向加载条件下的吸能特性和变形模式,并结合简化超折单元理论推导了该管的平均碰撞力理论公式。研究结果表明,星形混合多胞管的多边形截面与星形截面之间产生了协同效应,额外吸收了更多的冲击动能:当多边形边数N=6时,混合截面的协同性最好;当N=8时,该管的能量吸收效率最高。在此基础上,进一步开展了几何参数分析,发现壁厚对于星形混合多胞管的耐撞性有显著的影响,碰撞力水平随着壁厚的增加而线性增长。此外,星形角度的变化对耐撞性的影响相对较小,碰撞荷载效率和比吸能随着星形角度的增加表现出先增大后减小;当星形角度α=120°时,该管拥有最佳的耐撞性。
  • 图  1  混合截面的设计方法

    Figure  1.  Design method of hybrid cross-sections

    图  2  有限元模型的边界条件

    Figure  2.  Boundary conditions of finite element model

    图  3  铝合金6061-O的工程应力-应变曲线[26]

    Figure  3.  Engineering stress–strain curves of AA6061-O[26]

    图  4  TP6试件的网格收敛性测试

    Figure  4.  Mesh convergence test on TP6

    图  5  实验与有限元模拟的结果对比

    Figure  5.  Comparison of experimental and finite element simulation results

    图  6  三种薄壁管的碰撞力-位移曲线

    Figure  6.  Force-displacement curves of three thin-walled tubes

    图  7  三种薄壁管的能量吸收

    Figure  7.  Energy absorption curves of three thin-walled tubes

    图  8  PT8、ST8和SHM8的变形过程

    Figure  8.  Deformation processes of PT8, ST8 and SHM8

    图  9  三种薄壁管压溃后的变形视图

    Figure  9.  Deformation views of three thin-walled tubes after collapse

    图  10  不同壁厚条件下星形混合多胞管的初始峰值碰撞力$ {F}_{\mathrm{p}} $和平均碰撞力$ \bar{F} $

    Figure  10.  Initial peak impact force ($ {F}_{\mathrm{p}} $) and average impact force ($ \bar{F} $) of the SHM tubes with different wall thicknesses

    图  11  不同壁厚条件下星形混合多胞管的碰撞载荷效率$ \eta $和比吸能$ a $

    Figure  11.  Efficiency of impact load (η) and specific absorbed energy (a) of the SHM tubes with different wall thicknesses

    图  12  不同星形角度条件下星形混合多胞管的初始峰值碰撞力$ {F}_{\mathrm{p}} $和平均碰撞力$ \bar{F} $

    Figure  12.  Initial peak crushing force ($ {F}_{\mathrm{p}} $) and average impact force ($ \bar{F} $) of the SHM tubes with different star angles

    图  13  不同星形角度条件下星形混合多胞管的碰撞载荷效率$ \eta $和比吸能$ a $

    Figure  13.  Efficiency of impact load (η) and specific absorbed energy (a) of the SHM tubes with different star angles

    图  14  不同几何参数的星形混合多胞管变形视图

    Figure  14.  Deformation views of the SHM tubes with different geometric parameters

    图  15  折边的变形示意图

    Figure  15.  Schematic of the flange deformation

    图  16  角单元划分与3D视图

    Figure  16.  Classification of corner elements and 3D views

    图  17  理论预测值与有限元模拟值的对比

    Figure  17.  Comparison between theoretical predictions and finite element simulations

    表  1  有限元模型的材料参数

    Table  1.   Material parameters of finite element model

    材料密度/(kg·m−3)弹性模量/GPa泊松比初始屈服应力/MPa极限应力/MPa
    不锈钢78002100.3
    AA6061-O[26]270068.20.396.8195.0
    下载: 导出CSV

    表  2  三种薄壁管的耐撞性指标值

    Table  2.   Crashworthiness indicators of three thin-walled tubes

    试件Fp/kN$ \bar{F} $/kNη/%A/kJa/(kJ·kg−1)
    PT414.166.5546.250.518.68
    PT615.989.3858.690.7211.74
    PT817.4812.4971.470.9715.32
    ST417.9410.4158.030.8011.96
    ST621.7716.5275.871.2717.88
    ST824.2220.6385.201.5921.90
    SHM443.5822.1550.831.7113.64
    SHM650.9934.5367.732.6720.05
    SHM855.6543.2477.703.3424.60
    下载: 导出CSV

    表  3  角单元的角度

    Table  3.   Angle of corner elements

    试件α/(°)β/(°)γ/(°)
    SHM412030 90
    SHM612060120
    SHM812075135
    下载: 导出CSV
  • [1] WANG Z G, ZHANG J, LI Z D, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression [J]. International Journal of Mechanical Sciences, 2020, 186: 105893. DOI: 10.1016/j.ijmecsci.2020.105893.
    [2] 牛枞, 黄晗, 向枳昕, 等. 仿生多胞薄壁管耐撞性分析及优化 [J]. 爆炸与冲击, 2022, 42(10): 105901. DOI: 10.11883/bzycj-2021-0527.

    NIU C, HUANG H, XIANG Z X, et al. Crashworthiness analysis and optimization on bio-inspired multi-cell thin-walled tubes [J]. Explosion and Shock Waves, 2022, 42(10): 105901. DOI: 10.11883/bzycj-2021-0527.
    [3] MING S Z, SONG Z B, ZHOU C H, et al. The energy absorption of long origami-ending tubes with geometrical imperfections [J]. Thin-Walled Structures, 2021, 161: 107415. DOI: 10.1016/j.tws.2020.107415.
    [4] 刘亚军, 何玉龙, 刘姗姗, 等. 正多边形基多胞薄壁管的吸能特性 [J]. 爆炸与冲击, 2020, 40(7): 071404. DOI: 10.11883/bzycj-2019-0423.

    LIU Y J, HE Y L, LIU S S, et al. Energy absorption capacity of regular polygon-based multi-cell tubes [J]. Explosion and Shock Waves, 2020, 40(7): 071404. DOI: 10.11883/bzycj-2019-0423.
    [5] LIU H, CHNG Z X C, WANG G J, et al. Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements [J]. International Journal of Mechanical Sciences, 2021, 210: 106731. DOI: 10.1016/j.ijmecsci.2021.106731.
    [6] 何强, 王勇辉, 史肖娜, 等. 引入Sierpinski层级特性的新型薄壁多胞管轴向冲击吸能特性 [J]. 爆炸与冲击, 2020, 40(12): 123101. DOI: 10.11883.bzycj/2020-0055.

    HE Q, WANG Y H, SHI X N, et al. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact [J]. Explosion and Shock Waves, 2020, 40(12): 123101. DOI: 10.11883.bzycj/2020-0055.
    [7] PALOMBINI F L, DE ARAUJO MARIATH J E, DE OLIVEIRA B F. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo [J]. Thin-Walled Structures, 2020, 155: 106936. DOI: 10.1016/j.tws.2020.106936.
    [8] TRAN T, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. DOI: 10.1016/j.compstruct.2014.09.019.
    [9] ZHAO X, ZHU G H, ZHOU C Y, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases [J]. Composite Structures, 2019, 222: 110920. DOI: 10.1016/j.compstruct.2019.110920.
    [10] DENG X L, LIU W Y, LIN Z Q. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression [J]. Thin-Walled Structures, 2018, 130: 321–331. DOI: 10.1016/j.tws.2018.06.002.
    [11] TRAN T, BAROUTAJI A. Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading [J]. Engineering Failure Analysis, 2018, 93: 241–256. DOI: 10.1016/j.engfailanal.2018.07.003.
    [12] WANG Z G, LIU J F, YAO S. On folding mechanics of multi-cell thin-walled square tubes [J]. Composites Part B: Engineering, 2018, 132: 17–27. DOI: 10.1016/j.compositesb.2017.07.036.
    [13] MA W, LI Z X, XIE S C. Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading [J]. Engineering Structures, 2020, 204: 110069. DOI: 10.1016/j.engstruct.2019.110069.
    [14] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. DOI: 10.1016/j.compositesb.2019.107496.
    [15] WU J C, ZHANG Y, ZHANG F, et al. A bionic tree-liked fractal structure as energy absorber under axial loading [J]. Engineering Structures, 2021, 245: 112914. DOI: 10.1016/j.engstruct.2021.112914.
    [16] FAN H L, LUO Y H, YANG F, et al. Approaching perfect energy absorption through structural hierarchy [J]. International Journal of Engineering Science, 2018, 130: 12–32. DOI: 10.1016/j.ijengsci.2018.05.005.
    [17] ZHANG L W, BAI Z H, BAI F H. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2018, 122: 42–51. DOI: 10.1016/j.tws.2017.10.010.
    [18] HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. DOI: 10.1016/j.tws.2021.108315.
    [19] FU J, LIU Q, LIUFU K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. DOI: 10.1016/j.tws.2018.10.003.
    [20] GONG C, BAI Z H, WANG Y L, et al. On the crashworthiness performance of novel hierarchical multi-cell tubes under axial loading [J]. International Journal of Mechanical Sciences, 2021, 206: 106599. DOI: 10.1016/j.ijmecsci.2021.106599.
    [21] XU X, ZHANG Y, WANG J, et al. Crashworthiness design of novel hierarchical hexagonal columns [J]. Composite Structures, 2018, 194: 36–48. DOI: 10.1016/j.compstruct.2018.03.099.
    [22] VINAYAGAR K, KUMAR A S. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin-Walled Structures, 2017, 112: 184–193. DOI: 10.1016/j.tws.2016.12.008.
    [23] BIGDELI A, DAMGHANI NOURI M. Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking [J]. Mechanics of Advanced Materials and Structures, 2019, 26(19): 1644–1660. DOI: 10.1080/15376494.2018.1444231.
    [24] XIONG J, ZHANG Y, SU L, et al. Experimental and numerical study on mechanical behavior of hybrid multi-cell structures under multi-crushing loads [J]. Thin-Walled Structures, 2022, 170: 108588. DOI: 10.1016/j.tws.2021.108588.
    [25] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. DOI: 10.1115/1.3167137.
    [26] WANG J, ZHANG Y, HE N, et al. Crashworthiness behavior of Koch fractal structures [J]. Materials & Design, 2018, 144: 229–244. DOI: 10.1016/j.matdes.2018.02.035.
    [27] LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. DOI: 10.1016/j.ijmecsci.2020.106038.
    [28] ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression [J]. Thin-Walled Structures, 2013, 68: 156–163. DOI: 10.1016/j.tws.2013.03.014.
    [29] CHEN H C, ZHANG Y, LIN J M, et al. Crushing responses and optimization of novel sandwich columns [J]. Composite Structures, 2021, 263: 113682. DOI: 10.1016/j.compstruct.2021.113682.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  76
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-03-20
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回