• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

带壳JH-14C传爆药烤燃实验及响应特性数值模拟

肖有才 王瑞胜 范晨阳 张宏 王志军 孙毅

王明洋, 郑大亮, 钱七虎. 弹体对混凝土介质侵彻、贯穿的比例换算关系[J]. 爆炸与冲击, 2004, 24(2): 108-114. doi: 10.11883/1001-1455(2004)02-0108-7
引用本文: 肖有才, 王瑞胜, 范晨阳, 张宏, 王志军, 孙毅. 带壳JH-14C传爆药烤燃实验及响应特性数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555
XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555
Citation: XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555

带壳JH-14C传爆药烤燃实验及响应特性数值模拟

doi: 10.11883/bzycj-2022-0555
基金项目: 国家自然科学基金(11802273);山西省青年科学基金(201901D211279)
详细信息
    作者简介:

    肖有才(1988- ),男,博士,副教授, xiaoyoucai@nuc.edu.cn

  • 中图分类号: O381

Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation

  • 摘要: 为了探究受外部不同温度影响下带壳JH-14C传爆药的响应特性,设计了一套慢速烤燃下可测量JH-14C传爆药温度变化和壳体应变的实验装置,获取了不同升温速率下弹体内部温度随时间变化曲线、慢烤响应过程中装药壳体径向应变历程曲线,揭示了带壳JH-14C传爆药的慢速烤燃响应特性,将烤燃实验中弹体径向应变测试结果和炸药反应烈度相关联,提出了一种弹药烤燃实验反应等级的判定方法;基于热力学和装药化学反应,建立了带壳装药烤燃热传导模型和Arrhenius模型,采用BP神经网络反演了JH-14C传爆药热的热反应参数,对不同升温速率下弹体内部的温度场进行了研究。结果表明:升温速率越低,装药的响应温度越高,响应越剧烈;随着升温速率的降低,炸药的点火区域从炸药两端外缘逐渐向炸药内部转移。
  • 图  1  烤燃实验系统

    Figure  1.  Cook-off experimental system

    图  2  烤燃弹实物图、烤燃弹尺寸及温度测点布置

    Figure  2.  A photo of the cook-off bomb specimen as well as its sizes and the measuring point arrangement

    图  3  JH-14C传爆药细观形貌图

    Figure  3.  Meso-morphology of the JH-14C booster explosive

    图  4  带壳JH-14C传爆药在1.0 ℃/min和3.3 ℃/h升温速率下各测点的温度历程曲线

    Figure  4.  The temperature history curves at different measuring points in the JH-14C booster explosive with a shell under the heating rates of 1.0 ℃/min and 3.3 ℃/h

    图  5  3.3 ℃/h升温速率下烤燃结束后回收的实验弹体

    Figure  5.  The recovered bomb that has undergone cook-off under the heating rate of 3.3 ℃/h

    图  6  1.0 ℃/min和3.3 ℃/h升温速率下烤燃弹体径向应变历程曲线

    Figure  6.  Radial strain history curves of cook-off bombs under the heating rates of 1.0 ℃/min and 3.3 ℃/h

    图  7  含2层隐含层的BP神经网络

    Figure  7.  A back-propagation (BP) neural network with two hidden layers

    图  8  在1.0 ℃/min的升温速率下两测点温度的实验值与计算值的比较

    Figure  8.  Comparison between experimental and calculated temperatures at the two measuring points under the heating rate of 1.0 ℃/min

    图  9  在3.3 ℃/h的升温速率下两测点温度的实验值与计算值的比较

    Figure  9.  Comparison between experimental and calculated temperatures at the two measuring points under the heating rate of 3.3 ℃/h

    图  10  在1.0 ℃/min的升温速率下烤燃弹体不同测点的温度-时间曲线

    Figure  10.  Temperature-time curves at different measuring points of the cook-off bomb under the heating rate of 1.0 ℃/min

    图  11  在1.0 ℃/min的升温速率下JH-14C传爆药不同时刻温度分布

    Figure  11.  Temperature distribution in the JH-14C booster explosive under the heating rate of 1.0 ℃/min at different times

    图  12  不同升温速率下JH14C传爆药各测点的温度-时间曲线

    Figure  12.  Temperature-time curves of each measuring point in the JH-14C booster explosive under different heating rates

    图  13  不同升温速率下JH-14C传爆药的温度分布

    Figure  13.  Temperature distribution in the JH-14C booster explosive under different heating rates

    表  1  响应时刻不同测点的温度

    Table  1.   Temperatures of different measuring points at response times

    升温速率响应温度/℃
    外壁测点1测点2测点3测点4测点5测点6
    1.0 ℃/min230241234234243227226
    3.3 ℃/h212215217218221240264
    下载: 导出CSV

    表  2  壳体和炸药的热物理参数[28-29]

    Table  2.   Thermophysical parameters of the shell and explosive[28-29]

    材料密度/
    (kg·m−3)
    比热容/
    (J·kg−1·K−1)
    导热系数/
    (W·m−1·K−1)
    35CrMnSi785048043
    JH-14C170011760.4644
    下载: 导出CSV

    表  3  不同升温速率下JH-14C传爆药各测点在响应时刻的温度

    Table  3.   Temperature of each measuring point in the JH-14C booster explosive at response time under different heating rates

    升温速率/(℃·min−1)响应时间/min响应温度/℃
    外壁测点1测点2测点3测点4测点5测点6
    3.070.8235238229229212200199
    5.043.5240230223223195179178
    9.024.8246219211211166141141
    20.011.62541951871871077777
    下载: 导出CSV
  • [1] 郭伟, 贾路川, 王浩旭, 等. 加速老化PBX-6炸药的烤燃实验研究 [J]. 火炸药学报, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.

    GUO W, JIA L C, WANG H X, et al. Experimental research on cook-off test of accelerated aging PBX-6 explosive [J]. Chinese Journal of Explosives and Propellants, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.
    [2] 刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.

    LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.
    [3] 王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.

    WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.
    [4] 邓玉成, 李军, 任慧, 等. 不同结构尺寸丁羟发动机慢速烤燃特性 [J]. 含能材料, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.

    DENG Y C, LI J, REN H, et al. Slow cook-off characteristics of HTPB SRM with different structural sizes [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.
    [5] MERZHANOV A G, AVERSON A E. The present state of the thermal ignition theory: an invited review [J]. Combustion and Flame, 1971, 16(1): 89–124. DOI: 10.1016/S0010-2180(71)80015-9.
    [6] TERRONES G, SOUTO F J, SHEA R F, et al. Data analysis, pre-ignition assessment, and post-ignition modeling of the large-scale annular cookoff tests: LA-14190 [R]. Los Alamos, USA: Los Alamos National Laboratory, 2005. DOI: 10.2172/861364.
    [7] ASAY B W. Shock wave science and technology reference library, vol. 5: non-shock initiation of explosives [M]. Berlin, Germany: Springer, 2010: 198–200. DOI: 10.1007/978-3-540-87953-4.
    [8] 刘仓理. 装药化爆安全性 [M]. 北京: 科学出版社, 2022: 123–127.

    LIU C L. Explosive safety of charge [M]. Beijing, China: Science Press, 2022: 123–127.
    [9] PARKER R P. USA small-scale cook-off bomb (SCB) test [C]//Minutes of 21st Department of Defense Explosives Safety Board Explosives Safety Seminar. Houston, USA, 1984: 539–548.
    [10] HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
    [11] KOU Y F, CHEN L, LU J Y, et al. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations [J]. Combustion and Flame, 2021, 228: 154–162. DOI: 10.1016/j.combustflame.2021.01.043.
    [12] LI X D, WANG J Y, LIU W J, et al. Effect of vent hole size on combustion and explosion characteristics during cook-off tests [J]. Combustion and Flame, 2022, 240: 111989. DOI: 10.1016/j.combustflame.2022.111989.
    [13] 智小琦, 胡双启, 李娟娟, 等. 不同约束条件下钝化RDX的烤燃响应特性 [J]. 火炸药学报, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.

    ZHI X Q, HU S Q, LI J J, et al. Cook-off response characteristics of desensitizing RDX explosive under different restriction conditions [J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
    [14] WHITE N, REEVES T, CHEESE P, et al. Live decomposition imaging of HMX/HTPB based formulations during cook-off in the dual window test vehicle [J]. AIP Conference Proceedings, 2018, 1979(1): 150041.
    [15] CHEESE P, REEVES T, WHITE N, et al. Development of a dual windowed test vehicle for live streaming of cook-off in energetic materials [J]. AIP Conference Proceedings, 2018, 1979(1): 150009.
    [16] 乔炳旭, 李小东, 燕翔, 等. 粘结剂种类和含量对HMX基PBX烤燃响应特性的影响研究 [J]. 兵器装备工程学报, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.

    QIAO B X, LI X D, YAN X, et al. Study on influence of binder type and content of HMX-based PBX on response behavior under cook-off conditions [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.
    [17] TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. DOI: 10.1080/07370650701719170.
    [18] CHAVES F R, GÓIS J C. Slow cook-off simulation of PBX based on RDX [J]. Journal of Aerospace Technology and Management, 2017, 9(2): 225–230. DOI: 10.5028/jatm.v9i2.729.
    [19] JORENBY J W. Heat transfer analysis and assessment of kinetics systems for PBX 9501: LA-14259-T [R]. Los Alamos, USA: Los Alamos National Laboratory, 2006. DOI: 10.2172/902466.
    [20] JAEGER D L. Thermal response of spherical explosive charges subjected to external heating: W-7405-ENG-36 [R]. Los Alamos, USA: Los Alamos National Laboratory, 1980. DOI: 10.2172/5102476.
    [21] DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX 9501 [J]. AIP Conference Proceedings, 2000, 505(1): 837–840.
    [22] 刘瑞峰, 王昕捷, 黄风雷, 等. 2, 4-二硝基苯甲醚基熔铸炸药宏细观烤燃响应特性数值分析 [J]. 兵工学报, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.

    LIU R F, WANG X J, HUANG F L, et al. Macro-meso-scale cook-off simulations of DNAN-based melt-cast explosives [J]. Acta Armamentarii, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.
    [23] 陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.

    CHEN L, MA X, HUANG Y M, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
    [24] GRASWALD M, GUTSER R, SCHWEIZER M. Extended multi-physics model for slow-cook off events of warheads [C]//Insensitive Munitions and Energetic Materials Technology Symposium. Seville, Spain, 2019.
    [25] Defence Investment Division, NATO International Staff. Guidance on the assessment and development of insensitive munitions (IM): AOP-39 (3rd ed) [S]. USA: Allied Ordnance Publication, 2010. DOI: 10.5281/zenodo.3592238.
    [26] XIAO Y C, SUN Y, LI X, et al. Dynamic compressive properties of polymer bonded explosives under confining pressure [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 873–882. DOI: 10.1002/prep.201700016.
    [27] 李硕, 袁俊明, 刘玉存, 等. 聚黑-14C的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.

    LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosives and Propellants, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
    [28] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.

    DAI X G, HUANG Y M, LV Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
    [29] 牛余雷, 南海, 冯晓军, 等. RDX基PBX炸药烤燃试验与数值计算 [J]. 火炸药学报, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.

    NIU Y L, NAN H, FENG X J, et al. Cook-off test and its numerical calculation of RDX-based PBX explosive [J]. Chinese Journal of Explosives and Propellants, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.
  • 加载中
推荐阅读
弹体高速侵彻花岗岩靶体的结构响应特性
韩明海 等, 爆炸与冲击, 2025
混凝土中多点聚集爆炸效应起爆参数优化设计
时本军 等, 爆炸与冲击, 2025
不同倾角充填节理对岩石爆破块度的影响
陶明 等, 爆炸与冲击, 2025
弹体对超高性能混凝土侵彻深度的研究
聂晓东 等, 爆炸与冲击, 2024
常规三轴压缩下高强混凝土能量演化和破坏准则
张亮亮 等, 吉林大学学报, 2025
块石形状及空间排布对遮弹性能的离散元研究
罗玉婷 等, 高压物理学报, 2025
基于构型力断裂准则的骨料干涉作用分析
杜健欢 等, 西南交通大学学报, 2023
Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections
Li, Guoyu et al., ADVANCED SCIENCE, 2023
Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs
ENGINEERING STRUCTURES, 2024
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY
Powered by
图(13) / 表(3)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  167
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回