侵彻爆炸作用下钢纤维混凝土结构的破坏模式

杨石刚 罗泽 许继恒 方秦 杨亚 徐国琳 汤俊杰

杨石刚, 罗泽, 许继恒, 方秦, 杨亚, 徐国琳, 汤俊杰. 侵彻爆炸作用下钢纤维混凝土结构的破坏模式[J]. 爆炸与冲击, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003
引用本文: 杨石刚, 罗泽, 许继恒, 方秦, 杨亚, 徐国琳, 汤俊杰. 侵彻爆炸作用下钢纤维混凝土结构的破坏模式[J]. 爆炸与冲击, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003
YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003
Citation: YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003

侵彻爆炸作用下钢纤维混凝土结构的破坏模式

doi: 10.11883/bzycj-2023-0003
基金项目: 江苏省自然科学基金(BK20180081);国家重点研发计划(2020TFB20103300)
详细信息
    作者简介:

    杨石刚(1985- ),男,博士,副教授,youngshg@126.com

    通讯作者:

    罗 泽(1997- ),男,硕士研究生,luoze0114@126.com

  • 中图分类号: O389

Failure modes of concrete structure under penetration and explosion

Funds: LIANG B. Research on projectile penetration into bounded concrete target [D]. Beijing: China Academy of Engineering Physics, 2004: 14-73.
  • 摘要: 基于大口径发射平台进行了155 mm杀伤爆破榴弹毁伤钢纤维混凝土结构的试验,得到了打击不同位置时结构的破坏情况;结合LS-DYNA数值模拟,分析了不同打击位置和不同命中速度下钢纤维混凝土结构的毁伤效应,讨论了侵彻与爆炸联合作用下钢纤维混凝土结构的损伤过程和破坏模式。结果表明:钢纤维混凝土结构在155 mm榴弹作用下,配置钢筋的顶板和侧墙发生较轻的爆炸成坑破坏,无配筋的前墙发生严重的爆炸震塌破坏。SPG (smooth particle Galerkin method)-结构化ALE (arbitrary Lagrange-Euler)(S-ALE)流固耦合算法能够有效预测钢筋混凝土结构在侵彻和爆炸共同作用下的损伤发展过程和破坏模式。大口径弹体侵彻有限边界靶的加速度时程曲线特征为突增骤减单峰值形式,弹体速度呈现先快速降低后缓慢减小的特征;靶标在基于侵彻损伤的爆炸作用下,主要破坏模式为混凝土块大量崩塌和裂缝的生长,且随着侵彻速度的增加,爆炸造成的毁伤由局部破坏向结构整体破坏发展;混凝土破碎区内,垂直于弹体的钢筋在侵彻作用下达到屈服,板顶和板底的钢筋在爆炸后达到屈服。
  • 图  1  靶体及钢筋分布(单位:mm)

    Figure  1.  Target and reinforcement distribution (unit: mm)

    图  2  弹体结构及尺寸(单位:mm)

    Figure  2.  Structure and size of projectile (unit: mm)

    图  3  试验布局图

    Figure  3.  Test layout

    图  4  弹着点位置(单位:mm)

    Figure  4.  Impact point position (unit: mm)

    图  5  靶标破坏形态(单位:mm)

    Figure  5.  Target damage pattern (unit: mm)

    图  6  有限元模型

    Figure  6.  Finite element model

    图  7  前靶和背靶破坏模式与数值模拟结果对比(单位:m)

    Figure  7.  Comparison failure modes of the front target and back target with numerical simulation result (unit: m)

    图  8  钢筋损伤对比

    Figure  8.  Comparison of reinforcement damage

    图  9  试验弹、靶尺寸及钢筋分布示意图[21]

    Figure  9.  Diagram of projectile, target size and reinforcement distribution[21]

    图  10  试验与数值模拟毁伤范围对比

    Figure  10.  Comparison of damage range between test and numerical simulation

    图  11  靶标全模型(单位:mm)

    Figure  11.  Complete target model (unit: mm)

    图  12  侵彻损伤发展过程(v=900 m/s)

    Figure  12.  Damage processes of penetration(v=900 m/s)

    图  13  加速度时程曲线对比

    Figure  13.  Acceleration-time curves comparison

    图  14  速度时程曲线

    Figure  14.  Velocity-time curves

    图  15  侵彻与爆炸联合作用下靶标毁伤发展过程(v=900 m/s)

    Figure  15.  Development of target damage under the combined penetration and explosion(v=900 m/s)

    图  16  靶标顶面损伤分布

    Figure  16.  Damage distribution on the top surface of target

    图  17  侵彻和爆炸过程钢筋的破坏

    Figure  17.  Failure of reinforcement during penetration and explosion

    图  18  顶板钢筋单元位置

    Figure  18.  Position of reinforcement elements

    图  19  不同位置钢筋单元等效应力时程曲线

    Figure  19.  Von Mises stress histories of reinforcement elements at different position

    表  1  CF60钢纤维混凝土K&C模型参数[20]

    Table  1.   K&C model parameters of CF60 steel fiber reinforced concrete[20]

    ρ/(kg·m−3)fc/MPavft/MPaRSIZEUFCa0a0ya0f
    2440650.244.9539.371.45×10−4−6.5×1071.703×1070
    a1a1ya1fa2a2ya2fb1b2b3
    0.4810.7260.4761.57×10−94.77×10−92.31×10−90.750.20.018
     注:fc为抗压强度,ft为抗拉强度;v为泊松比。
    下载: 导出CSV

    表  2  炸药及状态方程参数

    Table  2.   Explosive and equation of state parameters

    ρ/(kg·m−3)D/(m·s−1)pC-J/GPaA/GPaB/MPaR1R2ωE0/(GJ·m−3)
    163069302137337474.150.90.357
     注:A、B、R1、R2、ω为炸药参数,E0为初始内能。
    下载: 导出CSV

    表  3  空气及状态方程参数

    Table  3.   Air and equation of state parameters

    ρ/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 E0/(kJ·m−3) V0
    1.29 0 0 0 0 0.4 0 0 250 1
     注:C0C6为状态方程系数,E0为初始内能,V0为初始相对体积。
    下载: 导出CSV

    表  4  数值模拟计算工况

    Table  4.   Numerical simulation calculation condition

    侵彻速度/
    (m·s−1)
    工况
    顶板
    (着弹点1)
    侧墙
    (着弹点2)
    前墙
    (着弹点3)
    300 300-1 300-2 300-3
    600 600-1 600-2
    900 900-1 900-2
    下载: 导出CSV

    表  5  侵彻深度的数值模拟结果

    Table  5.   Numerical simulation results of penetration depth

    侵彻深度/m
    300-1600-1900-1300-2600-2900-2
    0.561.182.010.521.102.00
    下载: 导出CSV
  • [1] SUN S Z, LU H, YUE S L, et al. The composite damage effects of explosion after penetration in plain concrete targets [J]. International Journal of Impact Engineering, 2021, 153: 103862. DOI: 10.1016/j.ijimpeng.2021.103862.
    [2] LAI J Z, ZHOU J H, YIN X X, et al. Dynamic behavior of functional graded cementitious composite under the coupling of high speed penetration and explosion [J]. Composite Structures, 2021, 274: 114326. DOI: 10.1016/j.compstruct.2021.114326.
    [3] LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [4] 杨浩若. 侵彻和爆炸下超高性能水泥基复合材料的毁伤效应及数值模拟 [D]. 南京: 南京理工大学, 2018: 1–58.

    YANG H R. Damage effect and numerical simulation of ultra high performance cement-based composites under penetration and explosion [D]. Nanjing: Nanjing University of Science and Technology, 2018: 1–58.
    [5] 翟阳修. 装甲钢/陶瓷/UHPC复合靶体抗弹体侵彻爆炸联合作用的试验与数值模拟研究 [D]. 南京: 中国人民解放军陆军工程大学, 2021: 1–113.

    ZHAI Y X. Experimental and numerical simulation study on the combined action of armoured-steel/ceramic/UHPC composite target against projectile explosion [D]. Nanjing: Army Engineering University of PLA, 2021: 1–113.
    [6] GENG H, LU H, YUE S L, et al. Implosion-induced collapse effect of initial penetration damage on concrete structures with finite thickness [J]. Mathematical Problems in Engineering, 2020, 2020: 6126348. DOI: 10.1155/2020/6126348.
    [7] 李守苍, 李树强, 闫玉凤, 等. 战斗部侵彻钢筋混凝土靶中爆炸毁伤的数值模拟和试验研究 [J]. 防护工程, 2016, 38(4): 5–10.

    LI S C, LI S Q, YAN Y F, et al. Numerical simulation and experimental study on warhead explosion damage after penetration into reinforced concrete target [J]. Protective Engineering, 2016, 38(4): 5–10.
    [8] XU S L, WU P, LI Q H, et al. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive [J]. Cement and Concrete Composites, 2021, 119: 103989. DOI: 10.1016/j.cemconcomp.2021.103989.
    [9] SHU Y Z, WANG G H, LU W B, et al. Damage characteristics and failure modes of concrete gravity dams subjected to penetration and explosion [J]. Engineering Failure Analysis, 2022, 134: 106030. DOI: 10.1016/j.engfailanal.2022.106030.
    [10] 梁龙河, 王政, 曹菊珍. 长杆弹对混凝土的侵爆效应 [J]. 爆炸与冲击, 2008, 28(5): 415–420. DOI: 10.11883/1001-1455(2008)05-0415-06.

    LIANG L H, WANG Z, CAO J Z. Damaging effect of concrete by penetration and explosion of a long-rod projectile [J]. Explosion and Shock Waves, 2008, 28(5): 415–420. DOI: 10.11883/1001-1455(2008)05-0415-06.
    [11] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
    [12] 曾亮, 王伟力, 朱建方. BLU-113钻地战斗部侵彻爆炸联合效应数值模拟 [C]//第七届全国工程结构安全防护学术会议论文集. 宁波: 中国力学学会, 2009: 217–221.

    ZENG L, WANG W L, ZHU J F. Numerical simulation of combined effects of penetration and explosion of BLU-113 ground penetrating warhead [C]//Proceedings of the 7th National Engineering Structure Safety Protection Academic Conference. Ningbo: China Mechanical Society, 2009: 217–221.
    [13] 张甲文, 孟会林, 卢江仁. 混凝土重力坝在侵彻及爆炸加载下的仿真分析 [J]. 弹箭与制导学报, 2008, 28(3): 126–130. DOI: 10.15892/j.cnki.djzdxb.2008.03.050.

    ZHANG J W, MENG H L, LU J R. Simulation analysis for concrete gravity dam under penetration and explosion [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 126–130. DOI: 10.15892/j.cnki.djzdxb.2008.03.050.
    [14] 杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析 [J]. 中南大学学报(自然科学版), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.

    YANG G D, WANG G H, LU W B, et al. Damage characteristics of concrete structures under the combined loadings of penetration and explosion [J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.
    [15] YANG G D, WANG G H, LU W B, et al. A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018, 22(8): 3085–3101. DOI: 10.1007/s12205-017-0610-1.
    [16] 宋顺成, 李国斌, 才鸿年, 等. 战斗部对混凝土先侵彻后爆轰的数值模拟 [J]. 兵工学报, 2006, 27(2): 230–234. DOI: 10.3321/j.issn:1000-1093.2006.02.010.

    SONG S C, LI G B, CAI H N, et al. Numerical simulation of penetration-then-detonation of concrete target with projectile [J]. Acta Armamentarii, 2006, 27(2): 230–234. DOI: 10.3321/j.issn:1000-1093.2006.02.010.
    [17] 曹吉星. 钢纤维混凝土的动态本构模型及其有限元方法 [D]. 成都: 西南交通大学, 2011: 17–37.

    CAO J X. Dynamic constitutive model of steel fiber reinforced concrete and its finite element method [D]. Chengdu: Southwest Jiaotong University, 2011: 17–37.
    [18] 辛春亮, 涂建, 王俊林, 等. 由浅入深精通LS-DYNA [M]. 北京: 中国水利水电出版社, 2019: 173–197.

    XIN C L, TU J, WANG J L, et al. Master LS-DYNA from simple to deep [M]. Beijing: China Water & Power Press, 2019: 173–197.
    [19] 陈小伟. 穿甲/侵彻力学的理论建模与分析(下册) [M]. 北京: 科学出版社, 2019: 281–344.

    CHEN X W. Modelling on the perforation and penetration Ⅱ [M]. Beijing: Science Press, 2019: 281–344.
    [20] 尹华伟, 蒋轲, 张料, 等. 钢纤维混凝土板在冲击与爆炸荷载下的K&C模型 [J]. 高压物理学报, 2020, 34(3): 024201. DOI: 10.11858/gywlxb.20190853.

    YIN H W, JIANG K, ZHANG L, et al. K&C model of steel fiber reinforced concrete plate under impact and blast load [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 024201. DOI: 10.11858/gywlxb.20190853.
    [21] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.

    DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
    [22] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [23] 梁斌. 弹丸对有界混凝土靶的侵彻研究 [D]. 北京: 中国工程物理研究院, 2004: 14–73.

    LIANG B. Research on projectile penetration into bounded concrete target [D]. Beijing: China Academy of Engineering Physics, 2004: 14–73.
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  69
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-10-24
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回