• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究

沙明工 孙莹 李雨桐 刘一鸣 李玉龙

许兴春, 高欣宝, 李天鹏, 张俊坤. 烟幕初始云团半径变化规律理论模型及实验研究[J]. 爆炸与冲击, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06
引用本文: 沙明工, 孙莹, 李雨桐, 刘一鸣, 李玉龙. 高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究[J]. 爆炸与冲击, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
Xu Xingchun, Gao Xinbao, Li Tianpeng, Zhang Junkun. Theoretical model and experiment of radius variation of initial smoke cloud[J]. Explosion And Shock Waves, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06
Citation: SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005

高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究

doi: 10.11883/bzycj-2023-0005
基金项目: 国家自然科学基金(11832015,12261131505);陕西省自然科学基础研究计划(2021JQ-081);太仓市基础研究计划(TC2020JC30)
详细信息
    作者简介:

    沙明工(1987- ),男,博士,讲师,shamg2020@nwpu.edu.cn

    通讯作者:

    李玉龙(1961- ),男,博士,教授,liyulong@nwpu.edu.cn

  • 中图分类号: O347.4

Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops

  • 摘要: 为了进一步研究飞行器蒙皮涂层的雨蚀损伤行为、探索其损伤机理、建立涂层雨蚀损伤判据,基于一级轻气炮搭建的单射流冲击实验平台,针对以碳纤维T300编织材料为基体、表面涂有同等厚度的3种涂层试样,在不同冲击速度(360、430、490、555、617 m/s)和冲击角度(0°、15°、30°)下进行了材料雨蚀实验。结果表明,随着雨滴冲击速度的不断升高,试样遭受到的冲击力逐渐提高,导致其损伤面积和体积均呈增大趋势;试样典型损伤形貌均为由损伤区域包围中央未损伤区域的环状损伤组成,且随着损伤加剧形成圆形剥离损伤。单射流冲击涂层出现侵蚀损伤的阈值速度约为360 m/s;而随着冲击角度的逐渐增大,试样的损伤面积和体积均逐渐减小;与硬度、模量等力学参数相比,表面粗糙度对于涂层雨蚀损伤的影响更显著。
  • 在现代战争中,随着精确制导武器的使用,对无源干扰的需求也与日俱增[1-7]。在无源干扰中,烟幕占据重要位置,对烟幕作战效能的评估也成为研究热点。烟幕的作战效能与烟幕浓度及面密度紧密相关,计算烟幕浓度及面密度首先要知道爆炸云团的起始半径和高度,即烟幕云团初始参数。爆炸型烟源高度和半径的定义是:爆炸能量使所形成的烟幕云团膨胀扩展,与此同时能量逐渐散失,膨胀过程结束时烟团的最大高度称为初始云团高度,最大半径称为初始云团半径[8]。关于烟幕初始云团参数的研究,朱晨光等[9]建立了烟幕云团的膨胀模型,该模型假设烟幕云团膨胀过程始终受膨胀力和空气阻力作用;陈宁等[10-11]建立了真空环境中烟幕云团形成阶段的膨胀模型,得到了烟幕云团在膨胀过程中体积及质量浓度与烟幕粒子运动速度运动时间的关系;本文中对烟幕膨胀过程理论模型作出改进:把云团的膨胀过程分为2个阶段,分别为等熵膨胀阶段和自由膨胀阶段,在此基础上建立烟幕云团膨胀的理论模型,该模型能够描述给定装置烟幕云团膨胀的基本规律,可将其用于爆炸发烟装置初始云团参数的计算。

    采用的模型为球形装药,配方是烟火药和轻质碳基干扰剂混合物。装药密度为1.1 g/cm3,其中碳基干扰剂单体(下文统称粒子微元)呈现多孔颗粒状,外形近似球体,半径为0.5 mm,密度为0.005 g/cm3。装药半径为13 mm,壳体材料为牛皮纸,壳体厚度为0.5 mm,采用中心点火方式,如图 1所示。

    图  1  发烟装置模型截面图
    Figure  1.  Model of smoke generator

    发烟剂爆炸后,形成一个高温高压云团[12],其组分是气/固混合物。通常情况下,炸药的爆轰过程[13-15]是非常短促的,因此,假定爆轰是瞬间完成的,即采用瞬时爆轰模型。基于瞬时爆轰假设,可使问题的研究有如下简化:(1)高温高压云团中气体为理想气体,第1阶段膨胀过程绝热等熵;(2)高温高压云团的膨胀过程视为一个不断扩大的球体,球体半径为r,质量为m;(3)假设有1个粒子微元始终处在云团边界,质量为dm,受产物膨胀力的作用面积为dS,粒子微元体积与云团的体积相比较足够小;(4)燃爆瞬间,t0=0,初始云团半径r=r0,第1个阶段的等熵膨胀完毕时t=t1,云团的半径为r=r1,当粒子微元速度变为零时t=t2,云团的半径r=r2。高温高压云团的膨胀过程分为2个阶段,分别为等熵膨胀阶段和自由膨胀阶段,如图 2所示。

    图  2  烟幕云团及粒子微元受力分析示意图
    Figure  2.  Schematic diagram of smoke cloud and force analysis on micro-unit

    第1阶段为燃爆产物等熵膨胀阶段,在该阶段,粒子微元在炸药爆轰能量驱动下膨胀(由于爆轰能量驱动力远大于空气阻力和重力,此阶段忽略空气阻力、重力),直至云团内部压力等于大气压时停止;

    第2阶段为自由膨胀阶段,粒子微元只受重力和空气阻力作用(为了便于计算,暂时忽略重力),直至在空气阻力作用下停止,此时形成的烟幕云团称为烟幕初始云团。

    由粒子微元的受力分析得,其在第1阶段烟幕云团等熵膨胀时主要受到云团内部压力作用[15]

    d2rdt2dm=pdS
    (1)

    式中:p为云团压强,Pa。

    根据上文假设,第1阶段为等熵过程,根据等熵过程理论有:

    p=p0ρκ0ρκ=p0ρκ0[m/(43 π r3)]κ
    (2)

    式中:p0为高温高压云团初始压强,Pa;ρ0为高温高压云团初始密度,kg/m3κ为等熵指数。

    将式(2)代入式(1), 得:

    d2rdt2dm=p0ρκ0[m/(43 π r3)]κdS
    (3)

    在第2阶段,粒子微元主要受到空气阻力的作用:

    d2rdt2dm=12CρdS(drdt)2
    (4)

    式中:C为空气阻力系数,ρ′为标准大气密度,kg/m3。式(3)~(4)分别为烟幕云团膨胀过程中第1、2阶段膨胀过程方程。

    式(3)~(4)均为二阶非线性微分方程,一般说来不容易求出解析解,但可以通过数值方法求出其数值解[16]。如龙格-库塔法[17-19],龙格-库塔法是一种间接采用泰勒级数展开而求解常微分方程初值问题的数值方法。其基本思想是利用在某点处值的线性组合构造公式,使其按泰勒展开后与初值问题的解的泰勒展开相比,有尽可能多的项完全相同,以确定其中的参数,从而保证算式有较高的精度。

    以四阶龙格库塔为例,截断误差为Rh(4)=O(h5),是关于步长h的无穷小量。下面给出最常用的四阶经典龙格-库塔公式:

    {yn+1=yn+h6(B1+B2+B3+B4)B1=f(xn,yn+1)B2=f(xn+h2,yn+h2B1)B3=f(xn+h2,yn+h2B2)B4=f(xn+h2,yn+h2B3)
    (5)

    首先,确定初始条件。根据理论模型,在REAL软件(各物质的物化参数在REAL软件的数据库中有存储)中进行计算,瞬时爆轰后,爆轰产物的温度T=1607.29 K,p′=12.89 MPa,气体质量m1=6.60 g,固体质量m2=3.52 g。因此,高温高压云团的初始参数为:云团压力p0=p′=12.89 MPa,爆炸瞬间高温高压云团半径r0=r′=13 mm。

    然后,编写MATLAB程序,得出云团半径随时间变化结果如图 3所示。由于第1阶段膨胀时间极短,为了区别2个阶段云团膨胀规律,图 3(a)所示的第1阶段膨胀时间为0~7 μs,图 3(b)所示的第2阶段膨胀时间为0~1 s。由图 3(a)可以看出等熵膨胀阶段为变加速运动,在高温高压云团初始膨胀的第1阶段结束时,云团半径近似为42.3 mm,约为初始半径13 mm的4倍,这是因为在第1阶段中,粒子微元在爆轰产生能量的驱动下,粒子微元的加速度、速度迅速增加,导致云团半径的迅速增加。由图 3(b)可以看出,在第2阶段,云团半径仍持续增加。在其后由于粒子微元仅受到空气阻力的作用,粒子微元的速度变化逐渐变缓,云团的膨胀速度也逐渐变慢,直至约1 s时终止在100 mm附近,膨胀结束。

    图  3  云团半径随时间的变化时程曲线
    Figure  3.  Histories of smoke cloud radius

    根据前文中的理论模型,加工烟幕发生装置,并将其吊装在固定架上,在室内条件下进行实验。采用"摄像法"测试云团的膨胀过程及初始云团参数,系统示意图如图 4所示。具体原理如下:通过摄像机记录烟幕成形过程,测距仪、测角仪测得距离角度参数,然后通过图像分析软件去除背景、确定烟幕边界阈值并二值化、去除图像上的“噪声”将被测对象提取出来。图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现明显的黑白效果,这样做方便提取图像特征,有利于对图片做进一步处理。用Matlab中的bwarea工具获取二值图像的面积,然后求解云团半径[8]:

    图  4  测试系统示意图
    Figure  4.  Schematic diagram of testing system
    r=Bs2 π 
    (6)

    式中:B=αl57.3,α=(arctanb2f)/b;其中α为显示屏张角, b为成像面宽度,mm;f为摄像机镜头焦距,mm;b′为显示窗口半宽度,B为距离放大倍数, l为摄像点至源点距离,m; s为二值化后图像中云团面积,m2

    采用高速摄影机为SONY880E,其距离放大倍数为15。截取视频中0~0.35 s烟幕云团图像, 如图 5所示。以图 5中最后一幅图为例说明利用MATLAB对结果进行处理计算的步骤和方法:(1)对图像进行二值化,如图 6所示;(2)利用图像处理软件,去掉图像噪声,如图 7所示;(3)在MATLAB中应用bearea函数计算燃爆产物的面积,并求解此面积下的等效半径。

    图  5  云团图像
    Figure  5.  Picture of smoke cloud
    图  6  图像二值化处理
    Figure  6.  Image binarization processing
    图  7  图像去除噪声处理
    Figure  7.  Image interference removal processing

    依据上述方法,对测得的图像进行处理,然后根据式(6)计算云团半径,并与理论计算曲线进行比较分析,如图 8所示。从图 8中可以看出,无论在云团膨胀的初期,还是在自由膨胀阶段,云团的半径变化实验测试值要比理论计算值小。主要原因有如下方面:第1阶段持续时间极短,为微妙级别,高速摄影机来不及捕捉烟幕膨胀图像;发烟剂未完全反应,放出的能量小于理论计算值。故烟幕云团半径变化实验测试值要比理论计算值小。可根据实验值对理论模型进行修正,使理论计算更加符合实际情况。

    图  8  云团半径变化时程曲线
    Figure  8.  Histories of smoke cloud radius

    本文中基于一种发烟装置,通过理论假设、建模分析、理论计算等方法描述了该装置烟幕云团的膨胀过程。通过实验结果分析可知,该方法能够描述该装置烟幕云团扩散规律。要进一步提高初始云团参数的计算精度,需考虑壳体破碎因素,如果能准确计算壳体破碎时高温高压云团的压强温度等参数,准确性将进一步提高。但该模型仅对发烟装置缩比模型进行研究,实际发烟装置尺寸比本文中模型尺寸要大,形状多是圆柱体。要把该理论运用于发烟装置烟幕初始云团参数的计算,还需考虑缩比效应、解决圆柱体爆炸与球体爆炸等效问题,这将在未来的工作中做进一步研究。

  • 图  1  液固表面冲击过程示意图[21]

    Figure  1.  Diagram of liquid-solid impact[21]

    图  2  应力波在涂层中传播过程示意图

    Figure  2.  Schematic diagrams of stress wave propagation process in coating

    图  3  单射流冲击试验装置

    Figure  3.  Single waterjet impact apparatus

    图  4  射流形态及速度随位移的变化

    Figure  4.  Form and velocity of waterjet varied with stand-off distance

    图  5  三种涂层试样表面及横截面

    Figure  5.  Surfaces and cross-sections of three kinds of coating samples

    图  6  三种涂层纳米压痕显微图像

    Figure  6.  Nano-indenter micrographs of three kinds of coating samples

    图  7  三种涂层在光学显微图像

    Figure  7.  Optical microscope micrographs of three kinds of coating samples

    图  8  3种损伤试样的SEM扫描电子显微图像

    Figure  8.  SEM micrographs of three kinds of damaged samples

    图  9  在15°冲击角时,以430,490,555和617 m/s的射流速度冲击涂层材料3后得到的电子显微镜微观形貌

    Figure  9.  Electron microscope micrographs after impacting the coating material 3 at the jet velocities of 360, 430, 490, 555 and 617 m/s with an impact angle of 0°

    图  10  损伤体积随冲击速度的变化

    Figure  10.  Relation between damaged volume and impact velocity

    图  11  在冲击角度为15°时不同冲击速度下材料1涂层的损伤SEM显微图像

    Figure  11.  SEM micrographs of the damaged coating of material 1 under the impact of different velocities at an impact angle of 15°

    图  12  在冲击角度为15°时不同冲击速度下材料2涂层的损伤SEM显微图像

    Figure  12.  SEM micrographs of the damaged coating of material 2 under the impact of different velocities at an impact angle of 15°

    图  13  在冲击角度为15°时不同冲击速度下材料3涂层的损伤SEM显微图像

    Figure  13.  SEM micrographs of the damaged coating of material 3 under the impact of different velocities at an impact angle of 15°

    图  14  涂层材料1在不同冲击角度下的损伤形貌

    Figure  14.  Damage morphologies of coating material 1 at various impact angles

    图  15  试样损伤体积随冲击角度变化规律

    Figure  15.  The relation between the damaged volume and impact angle

    图  16  冲击速度为617 m/s时不同冲击角度下材料1涂层的损伤SEM显微图像

    Figure  16.  SEM micrographs of the damaged coating of material 1 under the impact of different angles at an impact velocity of 617 m/s

    图  17  冲击速度为617 m/s时不同冲击角度下三种材料2涂层的损伤SEM显微图像

    Figure  17.  SEM micrographs of the damaged coating of material 2 under the impact of different angles at an impact velocity of 617 m/s

    图  18  冲击速度为617 m/s时不同冲击角度下材料3涂层的损伤SEM显微图像

    Figure  18.  SEM micrographs of the damaged coating of material 3 under the impact of different angles at an impact velocity of 617 m/s

    表  1  实验相关参数

    Table  1.   Experimental parameters

    试样材料冲击速度/(m·s−1)喷嘴直径/mm射流平均直径/mm
    聚氨酯3600.84.5
    430
    490
    555
    617
    下载: 导出CSV

    表  2  三种涂层的模量与硬度对比表

    Table  2.   Indentation modulus and hardness of three kinds of coating samples

    材料压痕模量/GPa硬度/GPa
    15.80560220.2402346
    23.85065200.1614986
    32.41433820.1109778
    下载: 导出CSV
  • [1] JENKINS D C. Erosion of surfaces by liquid drops [J]. Nature, 1955, 176(4476): 303–304. DOI: 10.1038/176303a0.
    [2] KENNEDY C F, FIELD J E. Damage threshold velocities for liquid impact [J]. Journal of Materials Science, 2000, 35(21): 5331–5339. DOI: 10.1023/A:1004842828161.
    [3] FIELD J E, DEAR J P, OGREN J E. The effects of target compliance on liquid drop impact [J]. Journal of Applied Physics, 1989, 65(2): 533–540. DOI: 10.1063/1.343136.
    [4] FIELD J E. Liquid impact erosion [J]. Physics Bulletin, 1986, 37(2): 70–72. DOI: 10.1088/0031-9112/37/2/027.
    [5] ITOH H, OKABE N. Evaluation of erosion by liquid droplet impingement for metallic materials [J]. Transactions of the Japan Society of Mechanical Engineers Series A, 1993, 59(567): 2736–2741. DOI: 10.1299/kikaia.59.2736.
    [6] RICHMAN R H. Liquid-impact erosion [M]//BECKER W T, BECKER R J. Failure Analysis and Prevention. USA: ASM International, 2002: 1013–1018. DOI: 10.31399/asm.hb.v11.a0003570.
    [7] 李焱. 防腐蚀涂层的失效分析 [J]. 上海涂料, 2008, 46(9): 36–39. DOI: 10.3969/j.issn.1009-1696.2008.09.012.

    LI Y. Failure analysis of anti-corrosive coats [J]. Shanghai Coatings, 2008, 46(9): 36–39. DOI: 10.3969/j.issn.1009-1696.2008.09.012.
    [8] 李凤兰, 于献, 马永福. 航空非金属材料性能测试技术3: 油料与涂料 [M]. 北京: 化学工业出版社, 2014: 4–6.
    [9] YOUNG T M, HUMPHREYS B, FIELDING J P. Investigation of hybrid laminar flow control (HLFC) surfaces [J]. Aircraft Design, 2001, 4(2/3): 127–146. DOI: 10.1016/S1369-8869(01)00010-6.
    [10] COTO B, HALLANDER P, MENDIZABAL L, et al. Particle and rain erosion mechanisms on Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection [J]. Wear, 2021, 466/467: 203575. DOI: 10.1016/j.wear.2020.203575.
    [11] GUJBA A K, HACKEL L, KEVORKOV D, et al. Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages [J]. Wear, 2016, 358/359: 109–122. DOI: 10.1016/j.wear.2016.04.008.
    [12] BECH J I, JOHANSEN N F J, MADSEN M B, et al. Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades [J]. Renewable Energy, 2022, 197: 776–789. DOI: 10.1016/J.RENENE.2022.06.127.
    [13] 应有, 许国东. 基于载荷优化的风电机组变桨控制技术研究 [J]. 机械工程学报, 2011, 47(16): 106–111,119. DOI: 10.3901/JME.2011.16.106.

    YING Y, XU G D. Development of pitch control for load reduction on wind turbines [J]. Journal of Mechanical Engineering, 2011, 47(16): 106–111,119. DOI: 10.3901/JME.2011.16.106.
    [14] SCHRAMM M, RAHIMI H, STOEVESANDT B, et al. The influence of eroded blades on wind turbine performance using numerical simulations [J]. Energies, 2017, 10(9): 1420. DOI: 10.3390/en10091420.
    [15] VALAKER E A, ARMADA S, WILSON S. Droplet erosion protection coatings for offshore wind turbine blades [J]. Energy Procedia, 2015, 80: 263–275. DOI: 10.1016/j.egypro.2015.11.430.
    [16] SCHMITT J. Materials parameters that govern the erosion behavior of polymeric composites in subsonic rain environments [C]//BERG C A, MCGARRY F J, ELLIOT S Y. Composite Materials: Testing and Design (Third Conference). USA: American Society for Testing and Materials, 1974: 303–323.
    [17] KING R B. Erosion by liquid impact. George S. Springer. John Wiley & Sons, New York & London. 1976.264 pp. £19.50 [J]. The Aeronautical Journal, 1976, 80(791): 492–493. DOI: 10.1017/S0001924000034552.
    [18] SLOT H M, GELINCK E R M, RENTROP C, et al. Leading edge erosion of coated wind turbine blades: review of coating life models [J]. Renewable Energy, 2015, 80: 837–848. DOI: 10.1016/j.renene.2015.02.036.
    [19] ZHANG S Z, DAM-JOHANSEN K, NØRKJÆR S, et al. Erosion of wind turbine blade coatings: design and analysis of jet-based laboratory equipment for performance evaluation [J]. Progress in Organic Coatings, 2015, 78: 103–115. DOI: 10.1016/j.porgcoat.2014.09.016.
    [20] KEEGAN M H, NASH D H, STACK M M. On erosion issues associated with the leading edge of wind turbine blades [J]. Journal of Physics D: Applied Physics, 2013, 46(38): 383001. DOI: 10.1088/0022-3727/46/38/383001.
    [21] ADLER W F. Rain impact retrospective and vision for the future [J]. Wear, 1999, 233/234/235: 25–38. DOI: 10.1016/S0043-1648(99)00191-X.
    [22] MISHNAEVSKY L. Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions [J]. Wind Energy, 2019, 22(11): 1636–1653. DOI: 10.1002/we.2378.
    [23] ZAHAVI J, NADIV S, SCHMITT G F JR. Indirect damage in composite materials due to raindrop impact [J]. Wear, 1981, 72(3): 305–313. DOI: 10.1016/0043-1648(81)90257-X.
    [24] COOK S S. Erosion by water-hammer [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 119(783): 481–488. DOI: 10.1098/rspa.1928.0107.
    [25] HEYMANN F J. On the shock wave velocity and impact pressure in high-speed liquid-solid impact [J]. Journal of Basic Engineering, 1968, 90(3): 400–402. DOI: 10.1115/1.3605114.
    [26] DEAR J P, FIELD J E. High-speed photography of surface geometry effects in liquid/solid impact [J]. Journal of Applied Physics, 1988, 63(4): 1015–1021. DOI: 10.1063/1.340000.
    [27] SPRINGER G S, YANG C I, LARSEN P S. Analysis of rain erosion of coated materials [J]. Journal of Composite Materials, 1974, 8(3): 229–252. DOI: 10.1177/002199837400800302.
    [28] TOBIN E F, YOUNG T M, RAPS D, et al. Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities [J]. Wear, 2011, 271(9/10): 2625–2631. DOI: 10.1016/j.wear.2011.02.023.
    [29] OBARA T, BOURNE N K, FIELD J E. Liquid-jet impact on liquid and solid surfaces [J]. Wear, 1995, 186/187: 388–394. DOI: 10.1016/0043-1648(95)07187-3.
    [30] IMESON A C, VIS R, DE WATER D. The measurement of water-drop impact forces with a piezo-electric transducer [J]. Catena, 1981, 8(1): 83–96. DOI: 10.1016/S0341-8162(81)80006-9.
    [31] NEARING M A, BRADFORD J M, HOLTZ R D. Measurement of force vs. time relations for waterdrop impact [J]. Soil Science Society of America Journal, 1986, 50(6): 1532–1536. DOI: 10.2136/sssaj1986.03615995005000060030x.
    [32] SHI H H, DEAR J P. Oblique high-speed liquid-solid impact [J]. JSME International Journal, 1992, 35(3): 285–295. DOI: 10.1299/jsmea1988.35.3_285.
  • 期刊类型引用(5)

    1. 王亦之,王斌,邵立,赵禄达. 固定阵地无源烟幕干扰装备作战配置计算研究. 电光与控制. 2022(03): 81-85 . 百度学术
    2. 郭爱强,高欣宝,李天鹏,戴俊杰,李笑楠. 五帧差分法提取实测红外烟幕图像的特征参数. 含能材料. 2021(12): 1144-1151 . 百度学术
    3. 徐路程,郝雪颖,肖凯涛,宋伟伟,陈春生. 爆炸型烟幕弹遮蔽效能仿真研究. 兵工学报. 2020(07): 1299-1306 . 百度学术
    4. 陈浩,高欣宝,李天鹏,张倩,陈玉丹,杨洋. 烟幕初始云团爆炸分散模型建立及计算方法. 兵器装备工程学报. 2019(04): 147-151 . 百度学术
    5. 陈浩,高欣宝,李天鹏,张开创,杨洋. 烟幕初始云团最大半径数值模拟. 含能材料. 2018(10): 820-827 . 百度学术

    其他类型引用(1)

  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  130
  • PDF下载量:  84
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-08-31

目录

/

返回文章
返回