高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究

沙明工 孙莹 李雨桐 刘一鸣 李玉龙

沙明工, 孙莹, 李雨桐, 刘一鸣, 李玉龙. 高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究[J]. 爆炸与冲击, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
引用本文: 沙明工, 孙莹, 李雨桐, 刘一鸣, 李玉龙. 高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究[J]. 爆炸与冲击, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
Citation: SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005

高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究

doi: 10.11883/bzycj-2023-0005
基金项目: 国家自然科学基金(11832015,12261131505);陕西省自然科学基础研究计划(2021JQ-081);太仓市基础研究计划(TC2020JC30)
详细信息
    作者简介:

    沙明工(1987- ),男,博士,讲师,shamg2020@nwpu.edu.cn

    通讯作者:

    李玉龙(1961- ),男,博士,教授,liyulong@nwpu.edu.cn

  • 中图分类号: O347.4

Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops

  • 摘要: 为了进一步研究飞行器蒙皮涂层的雨蚀损伤行为、探索其损伤机理、建立涂层雨蚀损伤判据,基于一级轻气炮搭建的单射流冲击实验平台,针对以碳纤维T300编织材料为基体、表面涂有同等厚度的3种涂层试样,在不同冲击速度(360、430、490、555、617 m/s)和冲击角度(0°、15°、30°)下进行了材料雨蚀实验。结果表明,随着雨滴冲击速度的不断升高,试样遭受到的冲击力逐渐提高,导致其损伤面积和体积均呈增大趋势;试样典型损伤形貌均为由损伤区域包围中央未损伤区域的环状损伤组成,且随着损伤加剧形成圆形剥离损伤。单射流冲击涂层出现侵蚀损伤的阈值速度约为360 m/s;而随着冲击角度的逐渐增大,试样的损伤面积和体积均逐渐减小;与硬度、模量等力学参数相比,表面粗糙度对于涂层雨蚀损伤的影响更显著。
  • 图  1  液固表面冲击过程示意图[21]

    Figure  1.  Diagram of liquid-solid impact[21]

    图  2  应力波在涂层中传播过程示意图

    Figure  2.  Schematic diagrams of stress wave propagation process in coating

    图  3  单射流冲击试验装置

    Figure  3.  Single waterjet impact apparatus

    图  4  射流形态及速度随位移的变化

    Figure  4.  Form and velocity of waterjet varied with stand-off distance

    图  5  三种涂层试样表面及横截面

    Figure  5.  Surfaces and cross-sections of three kinds of coating samples

    图  6  三种涂层纳米压痕显微图像

    Figure  6.  Nano-indenter micrographs of three kinds of coating samples

    图  7  三种涂层在光学显微图像

    Figure  7.  Optical microscope micrographs of three kinds of coating samples

    图  8  3种损伤试样的SEM扫描电子显微图像

    Figure  8.  SEM micrographs of three kinds of damaged samples

    图  9  在15°冲击角时,以430,490,555和617 m/s的射流速度冲击涂层材料3后得到的电子显微镜微观形貌

    Figure  9.  Electron microscope micrographs after impacting the coating material 3 at the jet velocities of 360, 430, 490, 555 and 617 m/s with an impact angle of 0°

    图  10  损伤体积随冲击速度的变化

    Figure  10.  Relation between damaged volume and impact velocity

    图  11  在冲击角度为15°时不同冲击速度下材料1涂层的损伤SEM显微图像

    Figure  11.  SEM micrographs of the damaged coating of material 1 under the impact of different velocities at an impact angle of 15°

    图  12  在冲击角度为15°时不同冲击速度下材料2涂层的损伤SEM显微图像

    Figure  12.  SEM micrographs of the damaged coating of material 2 under the impact of different velocities at an impact angle of 15°

    图  13  在冲击角度为15°时不同冲击速度下材料3涂层的损伤SEM显微图像

    Figure  13.  SEM micrographs of the damaged coating of material 3 under the impact of different velocities at an impact angle of 15°

    图  14  涂层材料1在不同冲击角度下的损伤形貌

    Figure  14.  Damage morphologies of coating material 1 at various impact angles

    图  15  试样损伤体积随冲击角度变化规律

    Figure  15.  The relation between the damaged volume and impact angle

    图  16  冲击速度为617 m/s时不同冲击角度下材料1涂层的损伤SEM显微图像

    Figure  16.  SEM micrographs of the damaged coating of material 1 under the impact of different angles at an impact velocity of 617 m/s

    图  17  冲击速度为617 m/s时不同冲击角度下三种材料2涂层的损伤SEM显微图像

    Figure  17.  SEM micrographs of the damaged coating of material 2 under the impact of different angles at an impact velocity of 617 m/s

    图  18  冲击速度为617 m/s时不同冲击角度下材料3涂层的损伤SEM显微图像

    Figure  18.  SEM micrographs of the damaged coating of material 3 under the impact of different angles at an impact velocity of 617 m/s

    表  1  实验相关参数

    Table  1.   Experimental parameters

    试样材料冲击速度/(m·s−1)喷嘴直径/mm射流平均直径/mm
    聚氨酯3600.84.5
    430
    490
    555
    617
    下载: 导出CSV

    表  2  三种涂层的模量与硬度对比表

    Table  2.   Indentation modulus and hardness of three kinds of coating samples

    材料压痕模量/GPa硬度/GPa
    15.80560220.2402346
    23.85065200.1614986
    32.41433820.1109778
    下载: 导出CSV
  • [1] JENKINS D C. Erosion of surfaces by liquid drops [J]. Nature, 1955, 176(4476): 303–304. DOI: 10.1038/176303a0.
    [2] KENNEDY C F, FIELD J E. Damage threshold velocities for liquid impact [J]. Journal of Materials Science, 2000, 35(21): 5331–5339. DOI: 10.1023/A:1004842828161.
    [3] FIELD J E, DEAR J P, OGREN J E. The effects of target compliance on liquid drop impact [J]. Journal of Applied Physics, 1989, 65(2): 533–540. DOI: 10.1063/1.343136.
    [4] FIELD J E. Liquid impact erosion [J]. Physics Bulletin, 1986, 37(2): 70–72. DOI: 10.1088/0031-9112/37/2/027.
    [5] ITOH H, OKABE N. Evaluation of erosion by liquid droplet impingement for metallic materials [J]. Transactions of the Japan Society of Mechanical Engineers Series A, 1993, 59(567): 2736–2741. DOI: 10.1299/kikaia.59.2736.
    [6] RICHMAN R H. Liquid-impact erosion [M]//BECKER W T, BECKER R J. Failure Analysis and Prevention. USA: ASM International, 2002: 1013–1018. DOI: 10.31399/asm.hb.v11.a0003570.
    [7] 李焱. 防腐蚀涂层的失效分析 [J]. 上海涂料, 2008, 46(9): 36–39. DOI: 10.3969/j.issn.1009-1696.2008.09.012.

    LI Y. Failure analysis of anti-corrosive coats [J]. Shanghai Coatings, 2008, 46(9): 36–39. DOI: 10.3969/j.issn.1009-1696.2008.09.012.
    [8] 李凤兰, 于献, 马永福. 航空非金属材料性能测试技术3: 油料与涂料 [M]. 北京: 化学工业出版社, 2014: 4–6.
    [9] YOUNG T M, HUMPHREYS B, FIELDING J P. Investigation of hybrid laminar flow control (HLFC) surfaces [J]. Aircraft Design, 2001, 4(2/3): 127–146. DOI: 10.1016/S1369-8869(01)00010-6.
    [10] COTO B, HALLANDER P, MENDIZABAL L, et al. Particle and rain erosion mechanisms on Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection [J]. Wear, 2021, 466/467: 203575. DOI: 10.1016/j.wear.2020.203575.
    [11] GUJBA A K, HACKEL L, KEVORKOV D, et al. Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages [J]. Wear, 2016, 358/359: 109–122. DOI: 10.1016/j.wear.2016.04.008.
    [12] BECH J I, JOHANSEN N F J, MADSEN M B, et al. Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades [J]. Renewable Energy, 2022, 197: 776–789. DOI: 10.1016/J.RENENE.2022.06.127.
    [13] 应有, 许国东. 基于载荷优化的风电机组变桨控制技术研究 [J]. 机械工程学报, 2011, 47(16): 106–111,119. DOI: 10.3901/JME.2011.16.106.

    YING Y, XU G D. Development of pitch control for load reduction on wind turbines [J]. Journal of Mechanical Engineering, 2011, 47(16): 106–111,119. DOI: 10.3901/JME.2011.16.106.
    [14] SCHRAMM M, RAHIMI H, STOEVESANDT B, et al. The influence of eroded blades on wind turbine performance using numerical simulations [J]. Energies, 2017, 10(9): 1420. DOI: 10.3390/en10091420.
    [15] VALAKER E A, ARMADA S, WILSON S. Droplet erosion protection coatings for offshore wind turbine blades [J]. Energy Procedia, 2015, 80: 263–275. DOI: 10.1016/j.egypro.2015.11.430.
    [16] SCHMITT J. Materials parameters that govern the erosion behavior of polymeric composites in subsonic rain environments [C]//BERG C A, MCGARRY F J, ELLIOT S Y. Composite Materials: Testing and Design (Third Conference). USA: American Society for Testing and Materials, 1974: 303–323.
    [17] KING R B. Erosion by liquid impact. George S. Springer. John Wiley & Sons, New York & London. 1976.264 pp. £19.50 [J]. The Aeronautical Journal, 1976, 80(791): 492–493. DOI: 10.1017/S0001924000034552.
    [18] SLOT H M, GELINCK E R M, RENTROP C, et al. Leading edge erosion of coated wind turbine blades: review of coating life models [J]. Renewable Energy, 2015, 80: 837–848. DOI: 10.1016/j.renene.2015.02.036.
    [19] ZHANG S Z, DAM-JOHANSEN K, NØRKJÆR S, et al. Erosion of wind turbine blade coatings: design and analysis of jet-based laboratory equipment for performance evaluation [J]. Progress in Organic Coatings, 2015, 78: 103–115. DOI: 10.1016/j.porgcoat.2014.09.016.
    [20] KEEGAN M H, NASH D H, STACK M M. On erosion issues associated with the leading edge of wind turbine blades [J]. Journal of Physics D: Applied Physics, 2013, 46(38): 383001. DOI: 10.1088/0022-3727/46/38/383001.
    [21] ADLER W F. Rain impact retrospective and vision for the future [J]. Wear, 1999, 233/234/235: 25–38. DOI: 10.1016/S0043-1648(99)00191-X.
    [22] MISHNAEVSKY L. Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions [J]. Wind Energy, 2019, 22(11): 1636–1653. DOI: 10.1002/we.2378.
    [23] ZAHAVI J, NADIV S, SCHMITT G F JR. Indirect damage in composite materials due to raindrop impact [J]. Wear, 1981, 72(3): 305–313. DOI: 10.1016/0043-1648(81)90257-X.
    [24] COOK S S. Erosion by water-hammer [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 119(783): 481–488. DOI: 10.1098/rspa.1928.0107.
    [25] HEYMANN F J. On the shock wave velocity and impact pressure in high-speed liquid-solid impact [J]. Journal of Basic Engineering, 1968, 90(3): 400–402. DOI: 10.1115/1.3605114.
    [26] DEAR J P, FIELD J E. High-speed photography of surface geometry effects in liquid/solid impact [J]. Journal of Applied Physics, 1988, 63(4): 1015–1021. DOI: 10.1063/1.340000.
    [27] SPRINGER G S, YANG C I, LARSEN P S. Analysis of rain erosion of coated materials [J]. Journal of Composite Materials, 1974, 8(3): 229–252. DOI: 10.1177/002199837400800302.
    [28] TOBIN E F, YOUNG T M, RAPS D, et al. Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities [J]. Wear, 2011, 271(9/10): 2625–2631. DOI: 10.1016/j.wear.2011.02.023.
    [29] OBARA T, BOURNE N K, FIELD J E. Liquid-jet impact on liquid and solid surfaces [J]. Wear, 1995, 186/187: 388–394. DOI: 10.1016/0043-1648(95)07187-3.
    [30] IMESON A C, VIS R, DE WATER D. The measurement of water-drop impact forces with a piezo-electric transducer [J]. Catena, 1981, 8(1): 83–96. DOI: 10.1016/S0341-8162(81)80006-9.
    [31] NEARING M A, BRADFORD J M, HOLTZ R D. Measurement of force vs. time relations for waterdrop impact [J]. Soil Science Society of America Journal, 1986, 50(6): 1532–1536. DOI: 10.2136/sssaj1986.03615995005000060030x.
    [32] SHI H H, DEAR J P. Oblique high-speed liquid-solid impact [J]. JSME International Journal, 1992, 35(3): 285–295. DOI: 10.1299/jsmea1988.35.3_285.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  105
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回