Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究

沙明工 孙莹 李雨桐 刘一鸣 李玉龙

胡宏伟, 宋浦, 王建灵, 郭炜, 徐洪涛, 金鹏刚, 任松涛. 炸药水中爆炸冲击因子的新型计算方法[J]. 爆炸与冲击, 2014, 34(1): 11-16.
引用本文: 沙明工, 孙莹, 李雨桐, 刘一鸣, 李玉龙. 高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究[J]. 爆炸与冲击, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
Hu Hong-wei, Song Pu, Wang Jian-ling, Guo Wei, Xu Hong-tao, Jin Peng-gang, Ren Song-tao. A new calculation method for shock factor of underwater explosion[J]. Explosion And Shock Waves, 2014, 34(1): 11-16.
Citation: SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005

高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究

doi: 10.11883/bzycj-2023-0005
基金项目: 国家自然科学基金(11832015,12261131505);陕西省自然科学基础研究计划(2021JQ-081);太仓市基础研究计划(TC2020JC30)
详细信息
    作者简介:

    沙明工(1987- ),男,博士,讲师,shamg2020@nwpu.edu.cn

    通讯作者:

    李玉龙(1961- ),男,博士,教授,liyulong@nwpu.edu.cn

  • 中图分类号: O347.4

Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops

  • 摘要: 为了进一步研究飞行器蒙皮涂层的雨蚀损伤行为、探索其损伤机理、建立涂层雨蚀损伤判据,基于一级轻气炮搭建的单射流冲击实验平台,针对以碳纤维T300编织材料为基体、表面涂有同等厚度的3种涂层试样,在不同冲击速度(360、430、490、555、617 m/s)和冲击角度(0°、15°、30°)下进行了材料雨蚀实验。结果表明,随着雨滴冲击速度的不断升高,试样遭受到的冲击力逐渐提高,导致其损伤面积和体积均呈增大趋势;试样典型损伤形貌均为由损伤区域包围中央未损伤区域的环状损伤组成,且随着损伤加剧形成圆形剥离损伤。单射流冲击涂层出现侵蚀损伤的阈值速度约为360 m/s;而随着冲击角度的逐渐增大,试样的损伤面积和体积均逐渐减小;与硬度、模量等力学参数相比,表面粗糙度对于涂层雨蚀损伤的影响更显著。
  • 水中兵器对舰船的破坏程度是由很多因素决定的,主要包括主装药的性质和质量、爆心与舰船的距离和位置、舰船的结构和性质等。在评价水中兵器的破坏威力时,引入了冲击因子Q这样一个衡量标准[1],冲击因子的物理意义是,对于同一舰船,若冲击因子相等,则认为其水下爆炸的冲击响应近似相等。以前,使用一种基于冲击波超压的冲击因子考核潜艇结构生命力,这也是冲击因子的最早形式。由大量的实验和数值计算可发现,该形式的冲击因子不能很好地反映结构的破坏程度。随着对水下爆炸现象的进一步研究,越来越倾向于使用另一种基于平面波假定的冲击因子,这种冲击因子是从作用在结构上的冲击波能的角度定义的,远场时具有较好的效果,但该冲击因子没有考虑近场冲击波形状和能量损耗。姚熊亮等[2]利用球面波理论对水中爆炸冲击因子进行了修正,考虑了冲击波形状对垂直投射到舰船结构的冲击波能的影响。但是,水中爆炸近场的能量损耗非常严重,如48%冲击波能损耗在25个装药半径的范围内[3],而且不同种类炸药的能量释放特性也存在一定的差异。然而,传统冲击因子中描述炸药性能的TNT当量只是总化学能的一个比,并不能完全表征炸药水中爆炸的能量输出与衰减特性,尤其是水中爆炸近场。本文中,通过冲击波峰值压力和冲量相似方程的乘积推导一种适用于水中爆炸冲击波因子的计算方法,从冲击波毁伤作用角度描述该计算方法的物理意义,通过水中爆炸实验进行验证,并与传统的水下爆炸冲击因子进行对比。

    水中爆炸冲击波的毁伤作用可用冲击因子表示,基于平面波的冲击因子的表达式为[4]:

    Q1=1+sinα2WnR

    式中:Q1为冲击因子;W 为炸药的质量(TNT当量),kg;R为目标距爆心的距离,m;α为冲击波的入射角;n为通过实验确定的装药指数,常取n=0.5。式(1)仅适用于炸药在水底以上爆炸,如果炸药被淤泥覆盖,则相当多的炸药能量消耗在淤泥中,冲击因子不再适用。

    对于潜艇目标,冲击波直接作用的结构表面即为垂直于冲击波传播方向的潜艇表面。此时,可认为α=90°,(1+sin90°)/2=1。当水面舰船遭受水下爆炸冲击时,冲击波是向各个方向传播的。其中,只有一部分冲击波能量对水面舰船起作用,这部分能量与水面舰船在垂直于冲击波方向的投影面积成正比,通常用(1+sinα)/2表示到达水面船只的冲击波方向的影响。在特定的攻击位置和方位,可把水底和水面的影响因素可看作一个常数,因此式(1)可简化为[5]:

    Q1=W0.5/R

    这种冲击因子实际上是基于平面波假设,并从结构遮挡冲击波能量的角度定义的,与冲击波能的关系可表述为[2]:

    Q21=4πEsρeηeSe

    式中:E为冲击波总能量,MJ/kg;Es为结构遮挡的冲击波能,MJ/kg;Se为结构在垂直于冲击波阵面上的投影面积,m2e为炸药的质量化学能,MJ/kg;ηe为炸药化学能转化为冲击波能的比例。

    由式(3)可知,当水下爆炸冲击波为平面波时,无论目标距爆心的距离大小如何,Se为常数。在爆炸远场,匀化冲击波可近似为平面波,而且冲击波能基本恒定,Q为Es的函数。在爆炸近场,冲击波能在不断衰减,冲击波的形状不能近似为平面波,此时,Q为ηe、Es的函数,在某一距离处,ηe与炸药的性能有关,Es与冲击波的形状和目标结构有关。因此,炸药的TNT当量并不能完全表征近场冲击波的特性,基于平面波的水中爆炸冲击因子具有一定局限性。而通过水中爆炸实验得到的冲击波相似方程包含了ηe的特性,反映了炸药水下爆炸的能量释放和衰减特性,下面以冲击波相似方程为基础对冲击因子进行推导。

    水中爆炸的相似方程为[3]:

    Y=K(W1/3/R)α

    式中:W 为炸药的质量,kg;R为测点距爆心的距离,m;K和α为与炸药相关的系数,K为相似常数,α为相似指数;冲击波参数Y 包括峰值压力pmax、比时间常数θ/W1/3、比冲量I/W1/3和比能流密度E/W1/3

    由水中爆炸实验得到的峰值压力的经验计算公式为:

    pmax=Kp(W1/3/R)αp

    冲量的计算公式为:

    I+=KIW1/3(W1/3/R)αI

    将峰值压力pmax和冲量I+相乘,得到:

    pmaxI+=KpKIWαp/3W1/3WαI/3RαpRαI

    整理得:

    (pmaxI+KpKI)1/αp+αI)=W(αp+αI+1)/3(αp+αI)R

    可简化为[6]:

    A(pmaxI+)m=WnR

    式中:m=1/(αpI),A=(KpKI)m,n=其中m和A为冲击波参数的影响因子,n为装药指数。

    通过水中爆炸实验得到的冲击波相似系数[7],计算了几种典型炸药的装药指数n,见表1

    表  1  几种典型炸药的相似系数和装药指数
    Table  1.  Exponentsα,K,nfor various high explosives
    下载: 导出CSV 
    | 显示表格

    表1可看出,在实验精度许可范围内,所有以TNT为基本组分的炸药,式(9)中装药指数n均可近似等于0.5。因此,冲击因子可表示为:

    Q2=A(pmaxI+)m=W0.5R

    式(10)将峰值压力pmax冲量I的毁伤作用双曲线与冲击因子的R-W关系曲线联系起来,从冲击波的毁伤作用角度表述了水中爆炸冲击因子的物理意义。

    TNT、RDX基和HMX基含铝炸药,全部为圆柱形压装炸药,配方组成和爆热见表2。药柱的长径比为(1.0~1.2)∶1,一端带雷管孔。Al粉为球形,直径为4.5~5.5μm。黏结剂中,w(F2603)=1.5%,w(蜡)=3%,w(石墨)=0.5%。试样质量均为25g,采用8号铜电雷管端面起爆。

    表  2  炸药配方及爆热
    Table  2.  Explosive formulation and explosion heat
    下载: 导出CSV 
    | 显示表格

    水池∅3.2m×2.6m,水深2.4m,池底和池壁均由8mm钢板焊接而成。入水深度1.6m,为总水深的2/3,满足冲击波和气泡的测试要求,可以消除边界效应的影响[8]。爆心与传感器的距离分别为23、32、44、58和90cm,测量的是炸药柱中心轴向的径向冲击波,实验布局如图1所示。

    测试系统包括138系列ICP型压电式电气石水下激波传感器和482A型信号适配器、高低频数据记录仪。冲击波信号的采样频率为10MHz。

    图  1  实验布局图
    Figure  1.  Experimental layout

    通过实验测量的冲击波参数,拟合得到了不同组分炸药的相似系数和装药指数,见表3

    表3可知,由pmaxI+推导的冲击因子计算的理想炸药、RDX基和HMX基含铝炸药的装药指数n都非常接近于0.5,平行性也非常好。可见,基于平面波假设的冲击因子的装药指数同样适合于RDX、HMX基的含铝炸药。

    表  3  不同组分炸药的相似系数和装药指数
    Table  3.  Exponentsα,K,nfor various explosives compositions
    下载: 导出CSV 
    | 显示表格

    为了对比基于平面波的水中爆炸冲击因子与由峰值压力与冲量的乘积pmaxI+推导的冲击因子计算公式的差异,依据实验数据计算了测距23、58和90cm的冲击因子,3个距离的水中爆炸冲击波参数见表4,不同距离处的冲击因子见表5图2

    表  4  水中爆炸冲击波峰值压力和冲量
    Table  4.  Shock wave peak pressure and impluse of underwater explosion
    下载: 导出CSV 
    | 显示表格

    表5图2可知,在爆炸远场,Q1与Q2一致性很好,但随着测距的减小,Q1与Q2的误差逐渐增大。例如在90cm处,Q1与Q2非常接近,但在23cm处,Q1基本都大于Q2,并且随着铝含量的增加误差越来越大。这是由于,冲击因子Q1仅包含炸药质量、爆距等参数,没有包含冲击波形状、炸药的能量输出结构和冲击波衰减特性对冲击因子的影响。在近场,冲击波形状不能完全使用球面波理论近似[9],应根据炸药的形状和爆距确定。另外,铝粉含量也会影响冲击波能、气泡能的分配比例和冲击波能量的衰减,例如,对于铝含量为0%~30%的RDX基含铝炸药,冲击波能占总化学能的比例在40%~60%,药柱18倍半径处,初始冲击波能损失了约50%~60%[10]。因此,炸药的TNT当量难以全面反映水下爆炸冲击波的特性,结合冲击形状的影响,水中爆炸冲击因子可用下式计算:

    表  5  不同距离处的冲击因子
    Table  5.  The shock factors at different distances
    下载: 导出CSV 
    | 显示表格

    Q2 =AB(pmaxI+)m (11)式中:B为装药形状影响因子[11]。在近场,球形装药和L/D=1的圆柱形装药,B=1.00;L/D=6的圆柱形装药,B=1.08~1.10;锥形装药,B=1.02~1.03。在远场时,B≈1.00,式(11)可简化成式(10)。

    图  2  不同距离处的冲击因子
    Figure  2.  The shock factors at different distances

    (1)水中爆炸冲击因子装药指数n=0.5,不仅适合所有以TNT为基本组分的炸药,也适合于RDX、HMX基的含铝炸药。

    (2)由峰值压力与冲量的乘积pmaxI+推导的冲击因子计算公式,从冲击波的毁伤作用的角度表述了水中爆炸冲击因子的物理意义,结合冲击形状对冲击波能的影响,计算近场冲击因子时具有更高的准确性。

  • 图  1  液固表面冲击过程示意图[21]

    Figure  1.  Diagram of liquid-solid impact[21]

    图  2  应力波在涂层中传播过程示意图

    Figure  2.  Schematic diagrams of stress wave propagation process in coating

    图  3  单射流冲击试验装置

    Figure  3.  Single waterjet impact apparatus

    图  4  射流形态及速度随位移的变化

    Figure  4.  Form and velocity of waterjet varied with stand-off distance

    图  5  三种涂层试样表面及横截面

    Figure  5.  Surfaces and cross-sections of three kinds of coating samples

    图  6  三种涂层纳米压痕显微图像

    Figure  6.  Nano-indenter micrographs of three kinds of coating samples

    图  7  三种涂层在光学显微图像

    Figure  7.  Optical microscope micrographs of three kinds of coating samples

    图  8  3种损伤试样的SEM扫描电子显微图像

    Figure  8.  SEM micrographs of three kinds of damaged samples

    图  9  在15°冲击角时,以430,490,555和617 m/s的射流速度冲击涂层材料3后得到的电子显微镜微观形貌

    Figure  9.  Electron microscope micrographs after impacting the coating material 3 at the jet velocities of 360, 430, 490, 555 and 617 m/s with an impact angle of 0°

    图  10  损伤体积随冲击速度的变化

    Figure  10.  Relation between damaged volume and impact velocity

    图  11  在冲击角度为15°时不同冲击速度下材料1涂层的损伤SEM显微图像

    Figure  11.  SEM micrographs of the damaged coating of material 1 under the impact of different velocities at an impact angle of 15°

    图  12  在冲击角度为15°时不同冲击速度下材料2涂层的损伤SEM显微图像

    Figure  12.  SEM micrographs of the damaged coating of material 2 under the impact of different velocities at an impact angle of 15°

    图  13  在冲击角度为15°时不同冲击速度下材料3涂层的损伤SEM显微图像

    Figure  13.  SEM micrographs of the damaged coating of material 3 under the impact of different velocities at an impact angle of 15°

    图  14  涂层材料1在不同冲击角度下的损伤形貌

    Figure  14.  Damage morphologies of coating material 1 at various impact angles

    图  15  试样损伤体积随冲击角度变化规律

    Figure  15.  The relation between the damaged volume and impact angle

    图  16  冲击速度为617 m/s时不同冲击角度下材料1涂层的损伤SEM显微图像

    Figure  16.  SEM micrographs of the damaged coating of material 1 under the impact of different angles at an impact velocity of 617 m/s

    图  17  冲击速度为617 m/s时不同冲击角度下三种材料2涂层的损伤SEM显微图像

    Figure  17.  SEM micrographs of the damaged coating of material 2 under the impact of different angles at an impact velocity of 617 m/s

    图  18  冲击速度为617 m/s时不同冲击角度下材料3涂层的损伤SEM显微图像

    Figure  18.  SEM micrographs of the damaged coating of material 3 under the impact of different angles at an impact velocity of 617 m/s

    表  1  实验相关参数

    Table  1.   Experimental parameters

    试样材料冲击速度/(m·s−1)喷嘴直径/mm射流平均直径/mm
    聚氨酯3600.84.5
    430
    490
    555
    617
    下载: 导出CSV

    表  2  三种涂层的模量与硬度对比表

    Table  2.   Indentation modulus and hardness of three kinds of coating samples

    材料压痕模量/GPa硬度/GPa
    15.80560220.2402346
    23.85065200.1614986
    32.41433820.1109778
    下载: 导出CSV
  • [1] JENKINS D C. Erosion of surfaces by liquid drops [J]. Nature, 1955, 176(4476): 303–304. DOI: 10.1038/176303a0.
    [2] KENNEDY C F, FIELD J E. Damage threshold velocities for liquid impact [J]. Journal of Materials Science, 2000, 35(21): 5331–5339. DOI: 10.1023/A:1004842828161.
    [3] FIELD J E, DEAR J P, OGREN J E. The effects of target compliance on liquid drop impact [J]. Journal of Applied Physics, 1989, 65(2): 533–540. DOI: 10.1063/1.343136.
    [4] FIELD J E. Liquid impact erosion [J]. Physics Bulletin, 1986, 37(2): 70–72. DOI: 10.1088/0031-9112/37/2/027.
    [5] ITOH H, OKABE N. Evaluation of erosion by liquid droplet impingement for metallic materials [J]. Transactions of the Japan Society of Mechanical Engineers Series A, 1993, 59(567): 2736–2741. DOI: 10.1299/kikaia.59.2736.
    [6] RICHMAN R H. Liquid-impact erosion [M]//BECKER W T, BECKER R J. Failure Analysis and Prevention. USA: ASM International, 2002: 1013–1018. DOI: 10.31399/asm.hb.v11.a0003570.
    [7] 李焱. 防腐蚀涂层的失效分析 [J]. 上海涂料, 2008, 46(9): 36–39. DOI: 10.3969/j.issn.1009-1696.2008.09.012.

    LI Y. Failure analysis of anti-corrosive coats [J]. Shanghai Coatings, 2008, 46(9): 36–39. DOI: 10.3969/j.issn.1009-1696.2008.09.012.
    [8] 李凤兰, 于献, 马永福. 航空非金属材料性能测试技术3: 油料与涂料 [M]. 北京: 化学工业出版社, 2014: 4–6.
    [9] YOUNG T M, HUMPHREYS B, FIELDING J P. Investigation of hybrid laminar flow control (HLFC) surfaces [J]. Aircraft Design, 2001, 4(2/3): 127–146. DOI: 10.1016/S1369-8869(01)00010-6.
    [10] COTO B, HALLANDER P, MENDIZABAL L, et al. Particle and rain erosion mechanisms on Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection [J]. Wear, 2021, 466/467: 203575. DOI: 10.1016/j.wear.2020.203575.
    [11] GUJBA A K, HACKEL L, KEVORKOV D, et al. Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages [J]. Wear, 2016, 358/359: 109–122. DOI: 10.1016/j.wear.2016.04.008.
    [12] BECH J I, JOHANSEN N F J, MADSEN M B, et al. Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades [J]. Renewable Energy, 2022, 197: 776–789. DOI: 10.1016/J.RENENE.2022.06.127.
    [13] 应有, 许国东. 基于载荷优化的风电机组变桨控制技术研究 [J]. 机械工程学报, 2011, 47(16): 106–111,119. DOI: 10.3901/JME.2011.16.106.

    YING Y, XU G D. Development of pitch control for load reduction on wind turbines [J]. Journal of Mechanical Engineering, 2011, 47(16): 106–111,119. DOI: 10.3901/JME.2011.16.106.
    [14] SCHRAMM M, RAHIMI H, STOEVESANDT B, et al. The influence of eroded blades on wind turbine performance using numerical simulations [J]. Energies, 2017, 10(9): 1420. DOI: 10.3390/en10091420.
    [15] VALAKER E A, ARMADA S, WILSON S. Droplet erosion protection coatings for offshore wind turbine blades [J]. Energy Procedia, 2015, 80: 263–275. DOI: 10.1016/j.egypro.2015.11.430.
    [16] SCHMITT J. Materials parameters that govern the erosion behavior of polymeric composites in subsonic rain environments [C]//BERG C A, MCGARRY F J, ELLIOT S Y. Composite Materials: Testing and Design (Third Conference). USA: American Society for Testing and Materials, 1974: 303–323.
    [17] KING R B. Erosion by liquid impact. George S. Springer. John Wiley & Sons, New York & London. 1976.264 pp. £19.50 [J]. The Aeronautical Journal, 1976, 80(791): 492–493. DOI: 10.1017/S0001924000034552.
    [18] SLOT H M, GELINCK E R M, RENTROP C, et al. Leading edge erosion of coated wind turbine blades: review of coating life models [J]. Renewable Energy, 2015, 80: 837–848. DOI: 10.1016/j.renene.2015.02.036.
    [19] ZHANG S Z, DAM-JOHANSEN K, NØRKJÆR S, et al. Erosion of wind turbine blade coatings: design and analysis of jet-based laboratory equipment for performance evaluation [J]. Progress in Organic Coatings, 2015, 78: 103–115. DOI: 10.1016/j.porgcoat.2014.09.016.
    [20] KEEGAN M H, NASH D H, STACK M M. On erosion issues associated with the leading edge of wind turbine blades [J]. Journal of Physics D: Applied Physics, 2013, 46(38): 383001. DOI: 10.1088/0022-3727/46/38/383001.
    [21] ADLER W F. Rain impact retrospective and vision for the future [J]. Wear, 1999, 233/234/235: 25–38. DOI: 10.1016/S0043-1648(99)00191-X.
    [22] MISHNAEVSKY L. Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions [J]. Wind Energy, 2019, 22(11): 1636–1653. DOI: 10.1002/we.2378.
    [23] ZAHAVI J, NADIV S, SCHMITT G F JR. Indirect damage in composite materials due to raindrop impact [J]. Wear, 1981, 72(3): 305–313. DOI: 10.1016/0043-1648(81)90257-X.
    [24] COOK S S. Erosion by water-hammer [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 119(783): 481–488. DOI: 10.1098/rspa.1928.0107.
    [25] HEYMANN F J. On the shock wave velocity and impact pressure in high-speed liquid-solid impact [J]. Journal of Basic Engineering, 1968, 90(3): 400–402. DOI: 10.1115/1.3605114.
    [26] DEAR J P, FIELD J E. High-speed photography of surface geometry effects in liquid/solid impact [J]. Journal of Applied Physics, 1988, 63(4): 1015–1021. DOI: 10.1063/1.340000.
    [27] SPRINGER G S, YANG C I, LARSEN P S. Analysis of rain erosion of coated materials [J]. Journal of Composite Materials, 1974, 8(3): 229–252. DOI: 10.1177/002199837400800302.
    [28] TOBIN E F, YOUNG T M, RAPS D, et al. Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities [J]. Wear, 2011, 271(9/10): 2625–2631. DOI: 10.1016/j.wear.2011.02.023.
    [29] OBARA T, BOURNE N K, FIELD J E. Liquid-jet impact on liquid and solid surfaces [J]. Wear, 1995, 186/187: 388–394. DOI: 10.1016/0043-1648(95)07187-3.
    [30] IMESON A C, VIS R, DE WATER D. The measurement of water-drop impact forces with a piezo-electric transducer [J]. Catena, 1981, 8(1): 83–96. DOI: 10.1016/S0341-8162(81)80006-9.
    [31] NEARING M A, BRADFORD J M, HOLTZ R D. Measurement of force vs. time relations for waterdrop impact [J]. Soil Science Society of America Journal, 1986, 50(6): 1532–1536. DOI: 10.2136/sssaj1986.03615995005000060030x.
    [32] SHI H H, DEAR J P. Oblique high-speed liquid-solid impact [J]. JSME International Journal, 1992, 35(3): 285–295. DOI: 10.1299/jsmea1988.35.3_285.
  • 期刊类型引用(2)

    1. 杨昭君,李雨桐,李明,魏政,孙莹,Babaytsev Arseny,Fedotenkov Gregory,Mednikov Aleksei,李玉龙,沙明工. 高动态雨滴冲击飞机蒙皮涂层的抗雨蚀影响因素与损伤机理. 表面技术. 2025(10): 82-95 . 百度学术
    2. Minggong SHA,Ying SUN,Yutong LI,Yiming LIU,Gregory FEDOTENKOV,Lev RABINSKIY,Arseniy BABAYTSEV,Yulong LI. Impact damage testing based on high-speed continuous water jet aircraft coatings. Chinese Journal of Aeronautics. 2024(10): 249-264 . 必应学术

    其他类型引用(2)

  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  177
  • PDF下载量:  94
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-08-31

目录

/

返回文章
返回