Parameter inversion of the polymethyl methacrylate constitutive model based on explosive cutting experiment
-
摘要: 为了获取爆炸切割数值模拟中有机玻璃(PMMA)的材料本构模型参数,建立了一种基于神经网络的有机玻璃Johnson Holmquist ceramics (JH-2)本构模型参数反演方法:基于从爆炸切割试验和现有研究得到的JH-2本构模型经验参数,确定本构模型参数的调整区间;使用LS-DYNA数值模拟软件对2.5 mm宽爆炸切割索切割14 mm PMMA平板过程进行数值模拟并收集平板损伤数据集;建立PMMA平板本构模型参数与损伤数据之间的神经网络模型;通过训练完成的神经网络模型对PMMA平板的JH-2本构模型参数进行反演。为验证通过反演参数的可靠性,进行了4.2 mm宽爆炸切割索切割19 mm PMMA平板试验和有限元数值模拟,计算结果中的平板损伤情况与实验结果相差较小,表明通过反演获得的JH-2本构模型参数能较好地应用于PMMA平板爆炸切割数值模拟。传统材料参数获取方法,该参数反演方法相较于可以通过较少的试验及测试,获得比较准确的材料本构模型参数。Abstract: In order to obtain the material constitutive model parameters of polymethyl methacrylate (PMMA) in the numerical simulation of explosive cutting, and to avoid the multiple tests required by the traditional method of obtaining the material constitutive model parameters, a neural network-based inversion method of the Johnson Holmquist Ceramics (JH-2) constitutive model parameters of PMMA was established. Firstly, a 2.5-mm-wide linear shaped charge was used to cut 14 mm PMMA flat plate, and the results of the explosive cutting test were analyzed to classify and quantify the damage of PMMA flat plate into three kinds of damage data: penetration depth, impact fracture thickness and spallation damage thickness. Based on the empirical parameters of the JH-2 constitutive model obtained from the explosive cutting experiments and existing studies, the adjustment interval of the constitutive model parameters was determined. LS-DYNA was used to simulate the process of cutting 14 mm PMMA flat plate with 2.5 mm wide linear shaped charge and to collect a flat plate damage data set containing the three kinds of damage data. A neural network model between the parameters of the PMMA flat plate constitutive model and the damage data was developed, and the model was trained using the plate damage data set. The inversion of the JH-2 constitutive model parameters of the PMMA flat plate was performed by the trained neural network model. In order to verify the reliability of the parameters obtained by the inversion method, a 4.2 mm wide linear shaped charge cutting 19 mm PMMA flat plate experiments and finite element numerical simulation were conducted, and the fracture characteristics and damage data of the PMMA flat plate in the calculation results were less different from the experiment results, indicating that the JH-2 constitutive model parameters obtained by the inversion can be better applied to PMMA flat plate explosive cutting numerical simulation. The parameter inversion method can obtain more accurate material constitutive model parameters with less experiments and tests than the traditional material parameter acquisition method.
-
Key words:
- neural network /
- explosive cutting /
- finite element analysis /
- parameter inversion
-
表 1 冲击强度测试数据
Table 1. Testing data of impact strength
平板 冲击强度/(J·cm−2) 测试1 测试2 测试3 平均值 1 1.35 1.50 1.25 1.37 2 1.83 1.65 1.74 1.74 3 2.85 2.82 3.00 2.89 表 2 PMMA平板损伤数据
Table 2. PMMA flat plate damage data
平板 平板厚度/mm 侵彻深度/mm 冲击断裂厚度/mm 层裂厚度/mm 是否成功切开 1 14 3.5 5.5 5.0 是 2 14 4.7 4.8 4.5 是 3 14 7.3 0 0 否 表 3 PMMA平板JH-2本构模型参数调整区间
Table 3. Adjustment interval of parameters of PMMA flat plate JH-2 constitutive model
A B C M N 1.85~2.05 2.35~2.65 −0.001~0.001 0.50~0.80 0.50~0.80 表 4 数据集的输入值
Table 4. Input values of the dataset
编号 h1/cm h2/cm h3/cm d1/cm d2/cm d3/cm δ1/cm δ2/cm δ3/cm 1 5.0 2.0 7.0 4.5 3.9 1.4 7.2 1.5 0 2 3.4 4.9 5.7 4.1 4.9 5.0 6.9 3.1 0 … … … … … … … … … … 61 3.3 5.3 5.4 3.2 7.8 3.0 5.2 3.1 0 62 4.1 5.2 4.7 3.5 8.0 2.5 6.0 1.3 0 表 5 数据集的输出值
Table 5. Output values of the dataset
编号 A B C M N 1 1.92 2.40 0.0035 0.52 0.55 2 1.94 2.47 −0.0021 0.61 0.59 … … … … … … 61 1.99 2.55 −0.0011 0.60 0.55 62 2.03 2.59 0 0.60 0.67 表 6 PMMA平板JH-2本构模型参数反演值
Table 6. Inversion values of parameters of PMMA flat plate JH-2 constitutive model
A B C M N 1.9566 2.4918 −0.0205 0.5861 0.5860 表 7 试验结果与数值模拟结果对比
Table 7. Comparison of test results and numerical simulation results
材料 侵彻深度/mm 冲击断裂厚度/mm 层裂厚度/mm 试验 数值模拟 试验 数值模拟 试验 数值模拟 Sample 1 3.5 3.4 5.5 5.5 5.0 5.1 Sample 2 4.7 4.7 4.7 4.7 4.6 4.6 Sample 3 7.3 7.0 0 0 0 0 -
[1] LI J X, LIU P F, TONG X Y. A simplified method for studying cyclic creep behaviors of deep-sea manned submersible viewport windows [J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104565. DOI: 10.1016/j.ijpvp.2021.104565. [2] DAR U A, ZHANG W H, XU Y J. Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA [J]. International Journal of Mechanics and Materials in Design, 2014, 10(1): 93–107. DOI: 10.1007/s10999-013-9233-y. [3] KANG Y Q, LI Y, XIAO C L, et al. Fractal damage and crack propagation of PMMA in multiple slit charge blasting [J]. Materials Today Communications, 2022, 31: 103249. DOI: 10.1016/j.mtcomm.2022.103249. [4] SAHRAOUI S, EL MAHI A, CASTAGNÈDE B. Measurement of the dynamic fracture toughness with notched PMMA specimen under impact loading [J]. Polymer Testing, 2009, 28(7): 780–783. DOI: 10.1016/j.polymertesting.2009.06.005. [5] 谢中秋, 张蓬蓬. PMMA材料的动态压缩力学特性及应变率相关本构模型研究 [J]. 实验力学, 2013, 28(2): 220–226. DOI: 10.7520/1001-4888-12-054.XIE Z Q, ZHANG P P. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material [J]. Journal of Experimental Mechanics, 2013, 28(2): 220–226. DOI: 10.7520/1001-4888-12-054. [6] DOROGOY A, GODINGER A, RITTEL D. Application of the incubation time criterion for dynamic brittle fracture [J]. International Journal of Impact Engineering, 2018, 112: 66–73. DOI: 10.1016/j.ijimpeng.2017.09.019. [7] RITTEL D, DOROGOY A. Impact of thick PMMA plates by long projectiles at low velocities. Part Ⅰ: Effect of head’s shape [J]. Mechanics of Materials, 2014, 70: 41–52. DOI: 10.1016/j.mechmat.2013.11.010. [8] 邹德波, 赵铮. 冲击强度对爆炸切割脆性材料的影响研究 [J]. 兵器装备工程学报, 2021, 42(8): 100–105. DOI: 10.11809/bqzbgcxb2021.08.016.ZOU D B, ZHAO Z. Study on influence of impact strength on explosive cutting of brittle materials [J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 100–105. DOI: 10.11809/bqzbgcxb2021.08.016. [9] 李木易, 邹德波, 赵铮. 下方介质对爆炸切割脆性平板的影响研究 [J]. 爆破器材, 2021, 50(5): 43–49. DOI: 10.3969/j.issn.1001-8352.2021.05.008.LI M Y, ZOU D B, ZHAO Z. Influence of the underlying medium on explosive cutting of brittle plates [J]. Explosive Materials, 2021, 50(5): 43–49. DOI: 10.3969/j.issn.1001-8352.2021.05.008. [10] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127. [11] 石祥超, 陶祖文, 孟英峰, 等. 致密砂岩Johnson-Holmquist损伤本构模型参数求取及验证 [J]. 岩石力学与工程学报, 2015, 34(S2): 3750–3758. DOI: 10.13722/j.cnki.jrme.2015.0515.SHI X C, TAO Z W, MENG Y F, et al. Calculation and verification for Johnson-Holmquist constitutive model parameters of tight sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3750–3758. DOI: 10.13722/j.cnki.jrme.2015.0515. [12] 贠永峰, 范永慧, 孙扬. 基于BP神经网络的隧道围岩力学参数反分析方法 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(2): 292–306.YUN Y F, FAN Y H, SUN Y. Back-analysis of mechanical parameters of tunnel surrounding rock by BP neural network method [J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(2): 292–306. [13] 李守巨, 于申, 孙振祥, 等. 基于神经网络的堆石料本构模型参数反演 [J]. 计算机工程, 2014, 40(6): 267–271. DOI: 10.3969/j.issn.1000-3428.2014.06.057.LI S J, YU S, SUN Z X, et al. Parameter inversion of constitutive model for rockfill material based on neural network [J]. Computer Engineering, 2014, 40(6): 267–271. DOI: 10.3969/j.issn.1000-3428.2014.06.057. [14] 宋宇宁. 有限元响应面法在土石坝可靠度分析中的应用 [D]. 大连: 大连理工大学, 2021: 14–20. DOI: 10.26991/d.cnki.gdllu.2021.002838. [15] 王志云, 李守巨, 王颂. 混凝土细观本构模型参数反演的估计方法 [J]. 黑龙江科技大学学报, 2019, 29(2): 225–229. DOI: 10.3969/j.issn.2095-7262.2019.02.019.WANG Z Y, LI S J, WANG S. Parameter estimation procedure for meso constitutive model of concrete materials [J]. Journal of Heilongjiang University of Science and Technology, 2019, 29(2): 225–229. DOI: 10.3969/j.issn.2095-7262.2019.02.019. [16] 茹一帆, 张乐乐, 刘文, 等. 基于缺口试件应力状态试验的Johnson-Cook模型参数反演标定方法 [J]. 机械工程学报, 2021, 57(22): 60–70. DOI: 10.3901/JME.2021.22.060.RU Y F, ZHANG L L, LIU W, et al. Inverse determination method of Johnson-Cook model parameters based on the stress state test of notched specimens [J]. Journal of Mechanical Engineering, 2021, 57(22): 60–70. DOI: 10.3901/JME.2021.22.060. 期刊类型引用(18)
1. 高飞,邓树新,张国凯,纪玉国,刘晨康,王明洋. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析. 兵工学报. 2023(12): 3601-3612 . 百度学术
2. 朱少平,王志亮,熊峰. 卵形弹丸对混凝土侵彻动力响应数值研究. 合肥工业大学学报(自然科学版). 2022(02): 243-250 . 百度学术
3. 邵伟,范锦彪,耿宇飞,王玮. 基于微元法的侵彻体弹头摩擦升温计算方法. 探测与控制学报. 2022(02): 34-40 . 百度学术
4. 章毅,胡枫,吴昊,王安宝. 高强混凝土介质侵彻系数计算方法. 防护工程. 2021(02): 31-38 . 百度学术
5. 张丁山,谷鸿平,徐笑,张博,吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响. 高压物理学报. 2021(05): 138-144 . 百度学术
6. 吴飚,任辉启,陈力,杨建超,黄家蓉,高伟亮,金栋梁. 弹体侵彻混凝土尺度效应试验研究与理论分析. 防护工程. 2020(02): 1-10 . 百度学术
7. 彭永,卢芳云,方秦,吴昊,李翔宇. 弹体侵彻混凝土靶体的尺寸效应分析. 爆炸与冲击. 2019(11): 58-68 . 本站查看
8. 张学伦,汪衡,谭正军,王昭明. 混凝土靶边界效应与弹丸长径比关联性的研究. 兵器装备工程学报. 2018(04): 11-13+18 . 百度学术
9. 刘宗伟,武海军,张学伦,刘俞平,熊国松,谭正军,曾令清. 高超弹体侵蚀机理及抗侵蚀设计研究. 兵器装备工程学报. 2017(04): 46-49 . 百度学术
10. 李艳,范文,赵均海,翟越. 中低速长杆弹侵彻半无限岩石靶的动态响应研究. 工程力学. 2017(09): 139-149 . 百度学术
11. 薛建锋,沈培辉,王晓鸣. 基于层裂机理的弹体侵彻混凝土的工程模型. 国防科技大学学报. 2017(03): 194-200 . 百度学术
12. 曹扬悦也,蒋志刚,谭清华,蒙朝美. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型. 振动与冲击. 2017(05): 48-53+60 . 百度学术
13. 薛建锋,沈培辉,王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究. 兵工自动化. 2016(02): 75-78 . 百度学术
14. 邓佳杰,张先锋,乔治军,郭磊,何勇,陈东东. 卵形弹体侵彻预开孔靶理论分析. 爆炸与冲击. 2016(05): 625-632 . 本站查看
15. 张学伦,刘宗伟. 弹丸CRH值对侵彻混凝土深度影响研究. 兵器装备工程学报. 2016(10): 31-34 . 百度学术
16. 薛建锋,沈培辉,王晓鸣. 钻地弹斜侵彻混凝土靶的工程计算模型. 航空学报. 2016(06): 1899-1911 . 百度学术
17. 张丁山,吕永柱,周涛,谷鸿平,张立建. 侵彻战斗部引信前后置过载的影响因素. 探测与控制学报. 2016(06): 41-45+50 . 百度学术
18. 彭永,方秦,吴昊,孔祥振,肖云凯. 不同头部形状弹体侵彻混凝土靶体的终点弹道参数分析. 兵工学报. 2014(S2): 128-134 . 百度学术
其他类型引用(11)
-