• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

坑道内爆炸条件下温压炸药的爆炸特性及其影响因素

纪玉国 张国凯 李干 邓树新 姚箭 李杰 王明洋 何勇

吴飞鹏, 刘洪志, 任杨, 蒲春生, 何延龙, 景成. 燃爆冲击作用下岩石初始破坏区形成机制与主控因素[J]. 爆炸与冲击, 2016, 36(5): 663-669. doi: 10.11883/1001-1455(2016)05-0663-07
引用本文: 纪玉国, 张国凯, 李干, 邓树新, 姚箭, 李杰, 王明洋, 何勇. 坑道内爆炸条件下温压炸药的爆炸特性及其影响因素[J]. 爆炸与冲击, 2024, 44(3): 032301. doi: 10.11883/bzycj-2023-0011
Wu Feipeng, Liu Hongzhi, Ren Yang, Pu Chunsheng, He Yanlong, Jing Cheng. Formation mechanism and main controlling factors of rock's initial damaged zone under explosive impact effect[J]. Explosion And Shock Waves, 2016, 36(5): 663-669. doi: 10.11883/1001-1455(2016)05-0663-07
Citation: JI Yuguo, ZHANG Guokai, LI Gan, DENG Shuxin, YAO Jian, LI Jie, WANG Mingyang, HE Yong. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors[J]. Explosion And Shock Waves, 2024, 44(3): 032301. doi: 10.11883/bzycj-2023-0011

坑道内爆炸条件下温压炸药的爆炸特性及其影响因素

doi: 10.11883/bzycj-2023-0011
基金项目: 国家自然科学基金(52278504);江苏省自然科学基金(BK20220141)
详细信息
    作者简介:

    纪玉国(1993- ),男,博士,jiyuguo8162@njust.edu.cn

    通讯作者:

    张国凯(1988- ),男,博士,教授,博士生导师,gkzhang@njust.edu.cn

  • 中图分类号: O382; TJ41

Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors

  • 摘要: 温压炸药在坑道内爆炸时会产生多种毁伤元,对坑道内人员和设备造成严重威胁。基于不同药量的温压炸药爆炸试验,对坑道内爆炸条件下温压炸药的爆炸特性开展了研究,分析了爆炸热效应演化特征、冲击波传播规律和氧浓度降低情况,讨论了坑道对铝粉后燃的约束作用规律以及形成高烈度后燃效应的药量条件。研究表明:温压炸药火球辐射亮度高于TNT,且其火球温度峰值超过TNT温度峰值的1.3倍。在火球演化过程中,火球在后燃阶段的温度峰值较火球形态刚稳定时提升超过10%。在冲击波传播规律方面,超压峰值与正压时间的TNT当量系数分别约为1.4与1.65。另外,铝粉后燃产生的压缩波对冲击波能够形成多种补充效果,陡峭升压的压缩波能够使冲击波峰值升高,持续时间长但升压速率慢的压缩波能够限制冲击波的衰减,延长整体正压作用时间。受坑道约束作用,温压炸药爆炸火球将与坑道壁面发生相互作用,进而提高铝粉的燃烧烈度。当温压炸药质量立方根与坑道直径的比值大于0.28 kg1/3/m时,将产生高烈度后燃效应。
  • 图  1  坑道内爆炸试验平面布置图

    Figure  1.  Layout plan of tunnel experiment

    图  2  坑道截面及内部空间

    Figure  2.  Section and internal space of the tunnel

    图  3  主要测量仪器设备

    Figure  3.  Main measuring instruments and equipment

    图  4  不同时刻高速相机拍摄火球辐射亮度(黑色背景)和红外相机拍摄火球温度(蓝色背景)

    Figure  4.  Fireball radiance (black background) and surface temperature of the fireball (blue background) at different moments

    图  5  火球尺寸随时间变化过程

    Figure  5.  Size change of fireball with time

    图  6  白色火焰占比随时间的变化过程

    Figure  6.  Change of white flame with time

    图  7  TBX-0.1kg、TBX-0.3kg、TBX-0.5kg、TBX-1kg的多谱线测温结果

    Figure  7.  Temperature measured of TBX-0.1kg, TBX-0.3kg, TBX-0.5kg and TBX-1kg by multi-wave lengths

    图  8  坑道内热电偶温度

    Figure  8.  Temperature inside the tunnel measured by thermocouple

    图  9  TBX-0.1kg、TBX-0.5kg、TBX-1kg坑道内A2截面的氧浓度测试结果

    Figure  9.  Oxygen measurement of TBX-0.1kg, TBX-0.5kg, TBX-1kg at Section A2

    图  10  TBX-1kg、TNT-1kg坑道内A11截面的氧浓度测试结果

    Figure  10.  Oxygen measurement of TBX-1kg and TNT-1kg at Section A11

    图  11  近坑道口测点压力曲线

    Figure  11.  Stress curves of air shock wave near the tunnel entrance

    图  12  坑道内平面波的压力曲线

    Figure  12.  Pressure curves of plane wave inside the tunnel

    图  13  1 kg TBX、TNT在坑道口内爆炸时,A1(2 m)、A2(4 m)和A3(6 m)测点的压力曲线

    Figure  13.  Pressure curves of 1kg TBX and TNT at A1 (2 m), A2 (4 m) and A3 (6 m) measuring points

    图  14  1 kg温压炸药在A3(2 m)、A7(4 m)和A11(6 m)测点的空气压力时程曲线

    Figure  14.  Pressure curves of 1 kg TBX at A3 (2 m), A7 (4 m) and A11 (6 m) measuring points

    图  15  不同距离处的超压峰值

    Figure  15.  Overpressure peaks at different distances

    图  16  不同距离处的正压时间

    Figure  16.  Positive pressure times at different distances

    图  17  不同距离的比冲量

    Figure  17.  Specific impulses at different propagation distances

    图  18  不同药量温压炸药的压力峰值随比例爆距的变化

    Figure  18.  Change of overpressure peak with scaled distance

    图  19  正压时间随m1/6x1/2的变化

    Figure  19.  Change of positive pressure time with m1/6x1/2

    图  20  比冲量随药量的变化

    Figure  20.  Specific impulses at different charge masses

    图  21  TBX-0.5kg和TBX-1kg在2~6 ms的火球演化过程

    Figure  21.  Fireball evolution process of TBX-0.5kg and TBX-1kg during 2−6 ms

    图  22  不同药量温压炸药的主要冲击波效应参数和热效应参数

    Figure  22.  Main parameters of shock wave effect and thermal effect under different charge masses

    表  1  试验工况

    Table  1.   Test conditions

    炸药 药量/kg 编号
    TBX 0.1 TBX-0.1kg
    TBX 0.3 TBX-0.3kg
    TBX 0.5 TBX-0.5kg
    TBX 1.0 TBX-1kg
    TNT 1.0 TNT-1kg
    下载: 导出CSV
  • [1] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.

    YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40.
    [2] BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056.
    [3] UYSTEPRUYST D, MONNOYER F. A numerical study of the evolution of the blast wave shape in rectangular tunnels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 225–231. DOI: 10.1016/j.jlp.2015.03.003.
    [4] 胡宏伟, 宋浦, 邓国强, 等. 温压炸药的特性及发展现状 [J]. 力学进展, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.

    HU H W, SONG P, DENG G Q, et al. Characteristics of thermobaric explosives and their advances [J]. Advances in Mechanics, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.
    [5] ARNOLD W, ROTTENKOLBER E. Thermobaric charges: modeling and testing [C]//Proceedings of the 38th International Annual Conference of ICT. Karlsruhe, Germany, 2007: V02.
    [6] HAHMA A, PALOVUORI K, ROMU H. Experimental studies on metal fueled thermobaric explosives [C]//Proceedings of the 35th International Annual Conference of ICT. Karlsruhe, Germany: ICT, 2006.
    [7] MOHAMED A K, MOSTAFA H E, ELBASUNEY S. Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation [J]. Journal of Hazardous Materials, 2016, 301: 492–503. DOI: 10.1016/j.jhazmat.2015.09.019.
    [8] 赵新颖, 王伯良, 李席, 等. 温压炸药爆炸冲击波在爆炸堡内的传播规律 [J]. 含能材料, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.

    ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion chamber [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
    [9] ZHANG F, ANDERSON J, YOSHINAKA A. Post-detonation energy release from TNT-aluminum explosives [J]. AIP Conference Proceedings, 2007, 955(1): 885–888. DOI: 10.1063/1.2833268.
    [10] PEUKER J M, KRIER H, GLUMAC N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2205–2212. DOI: 10.1016/j.proci.2012.05.069.
    [11] KIM C K, LAI M C, ZHANG Z C, et al. Modeling and numerical simulation of afterburning of thermobaric explosives in a closed chamber [J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(7): 979–986. DOI: 10.1007/s12541-017-0115-3.
    [12] 李根, 卢芳云, 李翔宇, 等. 基于气固两相反应流的温压炸药能量释放规律数值模拟及实验验证 [J]. 火炸药学报, 2021, 44(2): 195–204. DOI: 10.14077/j.issn.1007-7812.202012021.

    LI G, LU F Y, LI X Y, et al. Numerical simulation and experimental verification on the energy release law of thermostatic explosive based on gas-solid two-phase reaction flow [J]. Chinese Journal of Explosives & Propellants, 2021, 44(2): 195–204. DOI: 10.14077/j.issn.1007-7812.202012021.
    [13] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.

    GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
    [14] 苟兵旺, 李芝绒, 闫潇敏, 等. 复杂坑道内温压炸药冲击波效应试验研究 [J]. 火工品, 2014(2): 41–45. DOI: 10.3969/j.issn.1003-1480.2014.02.014.

    GOU B W, LI Z R, YAN X M, et al. Experimental study on shock wave effects of thermo-baric explosive in complex tunnel [J]. Initiators & Pyrotechnics, 2014(2): 41–45. DOI: 10.3969/j.issn.1003-1480.2014.02.014.
    [15] 茅靳丰, 陈飞, 侯普民. 温压炸药坑道口部爆炸冲击波毁伤效应研究 [J]. 力学季刊, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.

    MAO J F, CHEN F, HOU P M. Study on shock wave damage effects of thermobaric explosive explosion in tunnel entrance [J]. Chinese Quarterly of Mechanics, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
    [16] 孔霖, 苏健军, 李芝绒, 等. 不同装药坑道内爆炸冲击波传播规律的试验研究 [J]. 火工品, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.

    KONG L, SU J J, LI Z R, et al. Test study on explosion shock wave propagation of different explosives inside tunnels [J]. Initiators & Pyrotechnics, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.
    [17] 李世民, 李晓军, 李洪鑫. 温压炸药坑道内爆炸冲击波的数值模拟研究 [J]. 应用力学学报, 2012, 29(5): 595–600. DOI: 10.11776/cjam.29.05.B086.

    LI S M, LI X J, LI H X. Numerical simulation study of airblast of thermobaric explosive explosion in tunnel [J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 595–600. DOI: 10.11776/cjam.29.05.B086.
    [18] 徐利娜, 雍顺宁, 王凤丹, 等. 直坑道内爆炸冲击波超压传播规律研究 [J]. 测试技术学报, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.

    XU L N, YONG S N, WANG F D, et al. Study of blast wave overpressure propagation inside straight tunnel [J]. Journal of Test and Measurement Technology, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.
    [19] 田培培. 温压药剂爆炸高温场特性红外测试技术研究 [D]. 太原: 中北大学, 2016.

    TIAN P P. The research on characteristics of high temperature explosion field of thermobaric explosive with infrared testing technology [D]. Taiyuan: North University of China, 2016.
    [20] 许仁翰, 周钇捷, 狄长安. 基于高速成像的爆炸温度场测试方法 [J]. 兵工学报, 2021, 42(3): 640–647. DOI: 10.3969/j.issn.1000-1093.2021.03.021.

    XU R H, ZHOU Y J, DI C A. A temperature measuring method for explosive temperature field based on high-speed imaging technology [J]. Acta Armamentarii, 2021, 42(3): 640–647. DOI: 10.3969/j.issn.1000-1093.2021.03.021.
    [21] 仲倩, 王伯良, 王凤丹, 等. 温压炸药爆炸过程的瞬态温度 [J]. 含能材料, 2011, 19(2): 204–208. DOI: 10.3969/j.issn.1006-9941.2011.02.018.

    ZHONG Q, WANG B L, WANG F D, et al. Explosion temperature of thermobaric explosive [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 204–208. DOI: 10.3969/j.issn.1006-9941.2011.02.018.
    [22] LIU Z P, LIU S H, ZHAO J X, et al. A transient heat flux sensor based on the transverse Seebeck effect of single crystal Bi2Te3 [J]. Measurement, 2022, 198: 111419. DOI: 10.1016/j.measurement.2022.111419.
    [23] 纪玉国, 张国凯, 李干, 等. 坑道口部温压炸药爆炸热效应与冲击波传播规律实验研究 [J]. 南京理工大学学报, 2022, 46(6): 649–658. DOI: 10.14177/j.cnki.32-1397n.2022.46.06.001.

    JI Y G, ZHANG G K, LI G, et al. Experimental study on thermal effect and shock wave propagation of thermobaric explosives at tunnel entrance [J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 649–658. DOI: 10.14177/j.cnki.32-1397n.2022.46.06.001.
    [24] LV S S, ZHANG J Q, NI H J, et al. Research status and progress of oxygen sensor [J]. Journal of Physics: Conference Series, 2019, 1345(3): 032029. DOI: 10.1088/1742-6596/1345/3/032029.
    [25] 奥尔连科Л П. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.

    OPЛEHKO Л П. Explosion physics [M]. SUN C W, trans. Beijing: Science Press, 2011.
    [26] 肖伟. 助燃剂对含铝炸药爆炸特性的影响及其释能规律研究 [D]. 南京: 南京理工大学, 2021.
    [27] 陈海天, 李秀地, 郑颖人. 内爆炸坑道中冲击波冲量试验 [J]. 后勤工程学院学报, 2008, 24(2): 6–8,13. DOI: 10.3969/j.issn.1672-7843.2008.02.002.

    CHEN H T, LI X D, ZHENG Y R. Scale model tests to determine in-tunnel blast impulse from he-charges inside the tunnel entrance [J]. Journal of Logistical Engineering University, 2008, 24(2): 6–8,13. DOI: 10.3969/j.issn.1672-7843.2008.02.002.
    [28] 丁彤, 裴红波, 郭文灿, 等. RDX基含铝炸药爆轰波结构实验研究 [J]. 爆炸与冲击, 2022, 42(6): 062301. DOI: 10.11883/bzycj-2021-0217.

    DING T, PEI H B, GUO W C, et al. Experimental study on detonation wave profiles in RDX-based aluminized explosives [J]. Explosion and Shock Waves, 2022, 42(6): 062301. DOI: 10.11883/bzycj-2021-0217.
    [29] KEELEY J E. Fire intensity, fire severity and burn severity: a brief review and suggested usage [J]. International Journal of Wildland Fire, 2009, 18(1): 116. DOI: 10.1071/WF07049.
  • 期刊类型引用(4)

    1. 陆邱, 彭永, 王子国, 程浩, 李翔宇, 李志斌. 多级扩散室坑道内爆炸冲击波的衰减特性数值模拟研究. 含能材料. 2025(07) 百度学术
    2. 雒泓宇,胡宇鹏,冯晓伟,王峰军,李明海. 典型炸药对高海拔长直坑道内爆炸冲击波阵面温度传播特性的影响. 清华大学学报(自然科学版). 2025(04): 721-731 . 百度学术
    3. 纪玉国,何勇,谭仪忠,李杰,邵鲁中,张俊男,张国凯,李干. 近坑道口爆炸条件下温压炸药热效应与冲击波演化规律. 含能材料. 2024(12): 1287-1297 . 百度学术
    4. 刘威,王靖岩,韩志伟. 铝粉对温压炸药典型爆炸毁伤元的影响研究进展. 含能材料. 2024(12): 1298-1313 . 百度学术

    其他类型引用(1)

  • 加载中
推荐阅读
含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性
韦箫 等, 爆炸与冲击, 2025
环境温度对tatb/rdx传爆药起爆及驱动性能的影响
郭刘伟 等, 爆炸与冲击, 2024
爆炸位置对钛合金定向泄爆容器冲击响应的影响
郭德龙 等, 爆炸与冲击, 2024
隧道表面爆破地震波的产生机制及传播特征
蒙贤忠 等, 爆炸与冲击, 2024
冲击点火反应过程中rdx基pbx炸药的热辐射特性
施鑫辉 等, 高压物理学报, 2025
H型巷道内采用不同布置方式的双爆源瓦斯爆炸传播特性
叶青 等, 高压物理学报, 2024
纵向通风作用下隧道内氢泄漏爆炸隐患分析
谢永亮 等, 西南交通大学学报, 2024
Breaking iron homeostasis: iron capturing nanocomposites for combating bacterial biofilm
Sun, Wenyue et al., ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024
Self-extinction characteristics of fire extinguishing induced by nitrogen injection rescue in an enclosed urban utility tunnel
CASE STUDIES IN THERMAL ENGINEERING, 2024
Simulation, verification, and prediction of thermal response of bridgewire in electro-explosive device
MEASUREMENT, 2025
Powered by
图(22) / 表(1)
计量
  • 文章访问数:  658
  • HTML全文浏览量:  135
  • PDF下载量:  140
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-01-09
  • 修回日期:  2023-11-23
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回