• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

弹体斜侵彻双层钢板的结构响应和失效研究

朱超 张晓伟 张庆明 张陶

张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析[J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
引用本文: 朱超, 张晓伟, 张庆明, 张陶. 弹体斜侵彻双层钢板的结构响应和失效研究[J]. 爆炸与冲击, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017
ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
Citation: ZHU Chao, ZHANG Xiaowei, ZHANG Qingming, ZHANG Tao. Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets[J]. Explosion And Shock Waves, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017

弹体斜侵彻双层钢板的结构响应和失效研究

doi: 10.11883/bzycj-2023-0017
基金项目: 基础加强重点项目(2020-JCJQ-ZD-221-03)
详细信息
    作者简介:

    朱 超(1998- ),男,硕士研究生,zhuchao98@bit.edu.cn

    通讯作者:

    张晓伟(1982- ),男,博士,副教授,mezhangxw@bit.edu.cn

  • 中图分类号: O385

Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets

  • 摘要: 为探究弹体斜侵彻多层钢板的结构响应及失效规律,开展了圆形、椭圆和非对称椭圆三种截面弹体对双层钢板的斜侵彻试验,获得了不同弹体的弹道特性和结构失效情况。在此基础上,采用有限元软件对弹体斜侵彻过程的弹道特性、动态载荷以及结构响应进行了数值分析。基于空间自由梁理论和弹体动态载荷,给出了侵彻过程中弹体轴力和弯矩的分布规律,建立了弹体结构强度与失效分析方法。结果表明,弹体以正着角水平侵彻多层钢板时,存在一个临界攻角;当攻角小于临界值时,侵彻过程中会出现弹体低头、弹道向下偏转的现象;当攻角大于临界值时,则出现弹体抬头、弹道向上偏转的现象;该临界攻角随着靶板厚度的减小而增大。对于强度高、韧性低的弹体,失效模式为脆性断裂,断裂位置距头部0.72~0.81倍弹长,弹身后部所受横向冲击载荷是造成弹体断裂的主要原因。建立的弹体结构响应模型可准确预测弹体断裂失效及发生位置。此外,在三种截面弹体中,非对称椭圆弹体的断裂位置更接近头部。
  • 当前,随着海洋战略地位的日益突出,水下枪炮研究逐渐成为热点。膛口流场现象的复杂性和极高的时空演变特性会对弹丸的飞行产生初始扰动,进而影响到射击精度。因此,中间弹道学的研究受到了广泛关注。不同于空气中发射,水下发射时弹丸及火药燃气受到的水阻力更大,膛口流场现象更复杂。因此,有必要对水下枪炮发射膛口流场发展过程进行深入研究。

    针对枪炮空气中发射时的膛口流场已经开展了大量的实验、理论分析和数值模拟研究。为了能够较清楚地认识膛口流场的结构,Steward等[1]、Moumen等[2]和郭则庆等[3]对枪炮膛口流场进行了不同的可视化实验研究。随着计算机和动网格技术的发展,含初始流场和运动弹丸的膛口流场以及弹丸在膛口流场中的受力情况开始受到关注。膛口初始流场对火药燃气流场的发展及弹丸运动有一定的影响,李子杰等[4]基于有限体积法,对有、无初始流场两种条件下的膛口流场进行了数值模拟,分析了初始流场对膛口流场的影响。陈川琳等[5]利用实验和数值模拟相结合的方法分析了弹头在膛口流场中的受力和运动规律。

    相较于空气中发射,枪炮水下发射时的情形更为复杂,因此学者们从不同的方面对枪炮水下发射过程进行了研究。水下发射时,燃气从炮口中喷出,在液体中高速扩展形成燃气射流。Harby等[6]、甘晓松等[7]和Xue等[8]对水下燃气射流进行了实验和数值模拟研究,分析了射流气液边界的不稳定性及燃气扩展过程中出现的颈缩、断裂等现象。水下炮密封式发射内弹道特性虽与常规内弹道有许多相似之处,但仍存在一定的差异[9],通过对水下炮内弹道的研究,可以更好地掌握弹丸水下运动规律。超空泡射弹入水后形成超空泡,利用超空泡的水中减阻特性,降低了弹丸衰减速度,实现水中高速航行。易文俊等[10]、施红辉等[11]、刘富强等[12]、黄海龙等[13]及Gao等[14]对水下超空泡射弹特性进行了数值模拟。针对水下膛口流场方面的研究,则主要体现在密封式发射和全淹没式发射方式。张欣尉等[15]、张京辉等[16]分别利用密封式发射和全淹没式发射方式对12.7 mm水下枪在不同水深条件下的膛口流场进行了数值模拟,发现水深与膛口流场特性存在一定的规律性。

    前人所研究的重点多为空气中膛口流场、水下燃气射流场及水下枪膛口流场特性,对于水下火炮发射膛口流场特性的研究尚未见报道。本文中,利用30 mm口径火炮研究水下炮密封式发射膛口流场特性及演变规律,通过对火炮在空气中和水下发射时的膛口流场特性进行对比分析,讨论不同介质对火炮膛口流场演化特性的影响规律。

    水下发射膛口流场是一个较复杂的流场,为了能够对其进行有效的数值模拟,根据火炮水下密封式发射的特点,对所研究模型进行如下假设:

    (1)火药颗粒膛内燃烧遵循几何燃烧定律,药粒具有均一的理化性质,形状和尺寸一致,且遵循燃烧速度定律。

    (2)弹丸沿x轴正向移动,不考虑重力的影响,将膛口燃气射流与水的相互作用近似看作二维轴对称非稳态过程问题进行处理。

    (3)膛口燃气射流视为可压缩理想气体,满足理想气体状态方程,且忽略膛口燃气多组分化学反应的影响;将水视为不可压缩相,密度取 998.2 kg/m3

    (4)因水下密封式发射时,身管内有少量气体,弹丸出膛后不会直接与水接触,且膛口流场作用时间短暂,因此不考虑膛口附近水的空化及相变。

    本文中,各模型方程式如下。

    (1)连续性方程为:

    (αqρq)t+(αqρqv)=0
    (1)

    式中:q=1,2分别表示气体相和液体相; ρq为对应气体相和液体相的密度;αq为对应气体相和液体相的体积分数,且α1+α2=1t为时间;v为速度矢量。

    (2)动量守恒方程为:

    t(ρv)+(ρvv)=p+[μ(v+vT)]
    (2)
    ρ=nq=1αqρq
    (3)

    式中: ρ为气液混合密度,且 ρ=α1ρ1+(1α1)ρ2p为流场中的流体压力;μ为黏度系数。

    (3)能量守恒方程为:

    t(ρE)+[v(ρE+p)]=(keT)
    (4)

    式中: E为平均能量,E=( α1ρ1E1+α2ρ2E2)/( α1ρ1+α2ρ2);T为平均温度,T= (α1ρ1T1+α2ρ2T2)/(α1ρ1+α2ρ2);ke为有效热传导率。

    (4)理想气体状态方程为:

    p=ρRT
    (5)

    式中:R为火药燃气常数。

    (5)湍流方程:

    采用的湍流模型为标准k-ε模型,该模型的优点是可以忽略分子黏性的影响,具有较高的稳定性、经济性和计算精度:

    t(ρκ)+xi(ρκui)=xj[(μ+μtσκ)κxj]ρ¯uiujujxiρε
    (6)
    t(ρε)+xi(ρεui)=xj[(μ+μtσε)εxj]Cε2ρε2κ+Cε1εκρ¯uiujujxi
    (7)
    μt=Cμκ2/ε
    (8)

    式中:κ为湍流脉动动能;ε为湍流耗散率;ij为自由指标,uiuj为速度矢量;¯uiuj为雷诺应力;常数σκ=1.0和σε=1.3分别为湍流脉动动能和湍流耗散率对应的普朗特数;μt为湍流黏性系数;经验系数Cε1=1.44,Cε2 =1.92,Cμ=0.08。

    本文中,数值模拟计算需要耦合以下内弹道方程组[15]

    (1)火药形状函数为:

    ψ=χZ(1+λZ+μcZ2)
    (9)

    式中:ψ为药室内已燃火药的百分数, χλ μc分别为火药形状特征量,Z为已燃相对厚度。

    (2)火药燃速方程为:

    dZdt=u1pnae
    (10)

    式中:u1为燃速常数; n为燃速指数,由实验确定;e为药粒半厚度;pa为膛内燃气平均压力。

    (3)弹丸运动方程为:

    A0(pbph)dA=φmdvpdt
    (11)

    式中:pbph分别为弹丸底部压力和弹丸头部压力,A为弹丸的横截面积,m为弹丸的质量,φ为次要功系数,vp为弹丸速度。

    (4)内弹道基本方程组为:

    Ap(lψ+l)θ=fωψθφ2mv2px0A0phdAdl
    (12)
    lψ=l0[1Δρp(1ψ)αΔψ]
    (13)

    式中:l0为药室容积缩径长;lψ为药室自由容积缩径长;Δ为火药装填密度;ω为火药装药质量;α为火药气体的余容; ρp为火药密度;l为弹丸运动距离;比热比θ=k1k为绝热指数;f为火药力。

    (5)弹丸速度与行程关系式为:

    dldt=vp
    (14)

    将式(9)~(14)构成的内弹道方程组编写用户自定义函数(UDF)和FLUENT程序进行耦合计算。

    数值模拟基于压力的隐式算法求解,多相流采用VOF模型,利用PRESTO!插值格式进行压力项离散,利用压力隐式算子分裂(PISO)算法求解压力-密度的耦合,动量和能量的离散均采用一阶迎风格式,为了保证计算的稳定性,计算过程中时间步长控制在0.1 μs以内。

    对膛口流场进行数值模拟时,很难生成单块高质量网格,因此采用网格分区划分进行处理。将整个计算域划分为3个区,即药室Ⅰ区、身管Ⅱ区和膛口流场Ⅲ区。炮膛身管内径为30 mm,弹丸内弹道行程为1.9 m,膛口流场计算域为长1.3 m、半径0.35 m的圆柱形区域。为了更好地捕捉膛口流场波系结构,对膛口流场区采用渐变网格的方式进行了局部加密,膛口附近计算域的网格比较密集,最小网格尺寸为0.5 mm×0.5 mm,流场边界域的网格比较稀疏;在弹头附近采用三角形网格以更好地捕捉其形状,药室区和身管区采用均匀大小的结构网格,计算网格总数为240 000。图1(a)为计算模型示意图,图1(b)为计算网格示意图。

    图  1  计算模型
    Figure  1.  Calculation model

    设定药室为压力入口边界条件,身管、膛口为固壁边界条件,弹丸设定为刚体运动,从膛底开始按内弹道方程组计算弹丸运动速度;膛口流场区域外边界为压力出口边界。初始时刻,药室和身管充满气体,膛口外部区域中充满液体介质水,计算初值与环境参数相同,即初始压力为101 325 Pa,初始温度为300 K。

    网格无关性验证的目的是验证网格密度变化对计算结果的影响,即通过不断改变网格疏密来观察计算结果的变化,当其波动幅度在允许范围内时,就可以认为计算值与网格无关。

    为了保证数值模拟的效率与结果的精确性,对计算网格模型膛口周围流场区域进行了不同尺寸的网格加密,得到了3组不同密度的计算网格数,分别为200 000、240 000及270 000。以膛口到弹底轴向燃气压力分布为参考值,如图2所示,与采用240 000网格数计算时膛口到弹底轴向燃气压力分布相比,采用200 000和270 000网格数进行计算时的平均误差分别为12.5%和4.2%,其波动幅度在允许范围内,因此本文中采用240 000网格数进行数值模拟。

    图  2  膛口到弹底压力沿轴向变化曲线
    Figure  2.  Variation of axial pressure from the muzzleto the projectile bottom

    为了研究水下发射膛口流场演变特性并验证数值模型的有效性,通过搭建可视化水下发射实验测试系统,对弹道枪水下密封式发射进行了可视化实验,图3(a)为实验系统。密封式发射时,为了保证身管中充满空气,使用密封膜片将膛口密封,当膛内燃气达到一定压力时膜片打开。实验采用高速摄像机观察和记录多相流场的演化过程,得到了不同时刻的实验阴影图。通过采用与实验相同(弹体质量为45 g、水深0.5 m)的条件工况进行数值模拟,得到相应时刻的模拟相图与实验阴影图对比,如图3(b)所示。图3(b)中上半部分为实验阴影图,下半部分为采用本文中数值模拟方法得到的相图。由图3(b)可知,数值模拟相图中燃气的物质边界扩展尺度和位置与实验阴影图吻合较好。为了进一步说明数值模型的有效性,图4给出了不同时刻射流头部的最大轴向位移对比,由图4可知,数值模拟结果与实验测量结果吻合较好,最大偏差为4.2%。由此可知,利用本文中的数值模型和计算方法进行水下发射膛口流场模拟是可行的。

    图  3  实验系统(a)和数值模拟得到相应时刻的模拟相图与实验阴影图对比(b)
    Figure  3.  Experimental system (a) and the comparison of experimental shadow diagram and simulation results (b)
    图  4  射流头部轴向最大位移对比
    Figure  4.  Comparison of maximum axial displacement of jet head

    对30 mm火炮在水下密封式发射时的膛口流场分布进行数值模拟,密封片破膛压力取0.2 MPa,并与在空气中发射时的膛口流场进行比较,将弹丸出膛口瞬间看作t=0时刻。表1为两种发射环境下的部分内弹道及膛口参数,通过内弹道方程组(式(9)~(14))求解所得,表1x为身管长度,pm为膛内最大压力,v0为弹丸出膛口时的速度(弹丸初速),p0为燃气在膛口处的压力,T0为燃气在膛口处的温度。图5给出了两种发射环境下的燃气射流膛口压力在不同时刻的变化曲线。由表1中可以看出,由于两种发射环境下的膛内阻力基本相同,水下密封式发射时膛内最大压力较空气中发射只升高了7 MPa,而弹丸初速却比空气中发射降低了32 m/s,这是由于密封片使膛口处压力升高和弹丸出膛口时受到水的阻力共同使得弹丸初速降低,此时弹前燃气在炮口处聚集,导致膛口压力和温度显著升高,分别升高了54.8%和10.6%。由图5可知,弹丸出膛口后,两种发射环境下的燃气射流膛口压力均随时间呈衰减趋势,在50 μs内压力衰减迅速,然而由于水对燃气扩展的阻碍较大,气体在水中的膨胀速度比在空气中慢,燃气聚集使得炮口气体压力始终较高。

    表  1  内弹道及膛口参数
    Table  1.  Interior ballistics and muzzle parameters
    发射环境x/mv0/(m·s−1pm/MPap0/MPaT0/K
    空气中 1.94 985 317 62 2 152
    水下 1.94 953 324 96 2 380
    下载: 导出CSV 
    | 显示表格
    图  5  膛口燃气压力变化曲线
    Figure  5.  Variation of muzzle gas pressure

    为了研究膛口压力场的演变特性,图6图7分别给出了两种环境下不同时刻的压力分布和纹影图,上半部为压力云图,下半部为纹影图。图8给出了200 μs时刻燃气压力沿轴向的分布曲线。弹丸出膛口后,高温高压的火药燃气迅速喷出扩展,当射流滞止压力与环境压力之比大于3~4时, 流场结构中会出现瓶状正激波结构, 称为马赫盘。由图6可知,当弹丸运动30 μs时,燃气还未追上弹丸,炮口处燃气呈球状扩展。当弹丸运动70 μs时,火药燃气轴向迅速膨胀且已经包围弹丸;弹丸运动240 μs时,弹丸追赶初始冲击波,初始冲击波是弹前激波在膛口外绕射形成的球形冲击波,火药燃气扩展受冲击波影响压力升高;随着弹丸运动350 μs,弹丸已完全摆脱火药燃气的包围,形成完整的膛口流场。由图7可以发现,水下发射膛口压力场与空气中有所不同。弹丸运动30 μs时,火药燃气主要向弹丸侧前方(径向)膨胀且激波核心区较小,这是由于燃气同时受到弹丸和水的阻力,扩展不够充分。随着弹丸在水下不断运动,燃气逐渐由径向转为轴向膨胀,膛口处的燃气压力衰减比空气中更迅速。在水下运动过程中,由于高密度的水,弹丸头部产生的压力远高于膛口核心区的燃气压力,在空气运动过程中,受初始燃气流场的影响,被压缩的低密度空气在弹丸头部产生的压力极低,尽管弹丸被燃气包围后弹前压力有所升高,但仍远低于膛口核心区的燃气压力,从纹影图中可以更加清晰地看出两种介质中的流场波系结构。结合图8可以看出,在200 μs时,水下发射时燃气压力先沿轴向快速下降,穿越马赫盘后有较大幅度的上升,然后波动变化。由于此时空气中发射时马赫盘尚未形成,燃气压力迅速下降,之后基本保持不变。可见,介质密度的巨大差异导致膛口压力场的时空分布存在显著差别。

    图  6  空气中膛口压力分布及纹影图
    Figure  6.  Pressure distribution and schlieren diagram at muzzle in air
    图  7  水下膛口压力分布及纹影图
    Figure  7.  Pressure distribution and schlieren diagram at muzzle under water
    图  8  200 μs时轴向压力分布曲线
    Figure  8.  Axial pressure distribution curves at 200 μs

    为进一步了解水下发射膛口燃气压力变化,图9给出了水下不同时刻膛口的轴向压力分布曲线,由图9可知,70 μs时,由于燃气速度大于弹丸速度而形成的弹底激波所致,燃气压力会有突跃,此时马赫盘尚未形成;140 μs时,马赫盘开始形成,燃气压力上升幅度最大;随着弹丸不断运动,燃气压力波动逐渐减小,趋于平缓。由此可见,膛口激波结构是一个生长-衰减-稳定的过程。

    图  9  水下不同时刻轴向压力分布曲线
    Figure  9.  Distribution curves of underwater axial pressureat different moments

    弹丸出膛口时,膛内燃气压力远高于外部环境压力,属于高度欠膨胀射流。为了更直观地了解膛口燃气高度欠膨胀射流的结构特征,图10给出了空气中发射和水下密封式发射时膛口燃气射流结构流谱图[17],并给出了气液边界线。其中A区为核心激波自由膨胀区,火药燃气主要在该区域内膨胀,压力剧降,速度激增,该区域为超音速气流,Ma>1。B区为相交激波与反射边界之间的超音速区域。大部分燃气在扩展过程中穿过马赫盘进入亚声速区C,该区域燃气经过马赫盘后聚集,压力陡增,速度降为亚声速,Ma<1。有少部分的燃气经过两次斜激波后(入射激波和反射激波)进入D区,D区的燃气压力虽与C区相同,但由于经过两次不同的压缩过程使得速度增高,为超音速气流。由图10可以看出,空气中发射时膛口马赫盘完全形成后呈圆弧状结构,而水下发射时马赫盘结构呈梯形状。由于火炮在水下发射时,燃气在扩展过程中受到高密度水(约为空气密度的800倍)的挤压,射流前端高压区的存在使气体产生回流现象,该回流对射流主通道具有剪切作用,挤压与回流导致气流在垂直于炮口轴线方向上产生不稳定性,使得燃气射流扩展过程中出现颈缩现象,激波核心区受颈缩作用,马赫盘形状结构呈梯形状,导致空气中发射和水中发射时的马赫盘结构不同。

    图  10  两种环境下膛口流场流谱
    Figure  10.  Flow spectrum of muzzle flow field in two environments

    为了更好地了解马赫盘的形成过程及特性,图1112分别给出了水下发射和空气中发射时不同时刻的马赫数分布和纹影图,其中上半部为马赫数云图,下半部为纹影图。图13给出了70与200 μs时刻马赫数沿轴线的分布曲线。由图11可以看出,70 μs时,由于受到弹丸和水的阻力作用,燃气主要为径向膨胀,炮口两侧马赫数较高。随着燃气的喷射和膨胀,气体射流形成主轴激波结构,直到140 μs时马赫盘初步生成。随着弹丸不断运动,燃气射流充分发展,激波面积增大,马赫盘向垂直轴线方向变化,直径逐渐增大,在240 μs时,入射激波、反射激波及马赫盘在接触面交汇于一点,形成三波点结构。由图12可知,70 μs时,火药燃气流场逐步吞没初始流场,在炮口后形成球状激波结构;随着弹丸运动和燃气不断喷出,在320 μs时马赫盘开始初步生成,三波点结构也已形成。当弹丸运动到480 μs,激波结构完全生成,马赫盘呈碗状结构。由图13(a)可知,两种环境发射时马赫数均先沿轴线增大后减小,由图13(b)可知,200 μs、水下发射时,马赫数沿轴线增大后呈断崖式衰减,结合图10的膛口流场流谱图可知,燃气在穿越马赫盘后进入亚声速区,速度骤降,与水下发射不同,空气中发射时的马赫盘还未形成。

    图  11  水下发射时膛口马赫数分布及纹影图
    Figure  11.  Mach number distribution and schlieren diagram at muzzle under water
    图  12  空气中发射时膛口马赫数及纹影图
    Figure  12.  Mach number distribution and schlieren diagram at muzzle in air
    图  13  马赫数轴向分布曲线
    Figure  13.  Axial distribution of Mach number

    对比可知:水下发射时膛口附近会有气液夹带,而空气中发射时低密度的空气对射流尾翼没有大的影响;水下发射时火药燃气射流受气液界面的相互作用影响,更快形成马赫盘结构,而在空气中,火药燃气膨胀过程中受阻较小,燃气射流较长时间与弹底作用形成弹底激波,阻碍马赫盘的形成;水下发射时的激波核心区面积明显小于空气中发射时的激波核心区面积,且弹丸头部不存在冠状冲击波。

    两种环境下的马赫盘轴向位移随时间变化曲线如图14所示,为了直观地看出马赫盘距离膛口位置随时间变化的规律,经过计算得出,马赫盘距离膛口位置随时间变化呈指数增长,拟合公式为:

    图  14  两种环境下的马赫盘轴向位移随时间变化曲线
    Figure  14.  Mach disc’s axial displacement with time in two environments
    x(t)=x0+x1et/t1
    (15)

    式中:x(t)为马赫盘距膛口位移(mm),膛口为坐标原点;x0为初始系数, x0=113mmx1为增速系数,x1=80mmt1为时间增长因子,t1=180

    而空气中发射时马赫盘距离膛口位置随时间的变化呈线性增长,拟合公式为:

    x(t)=x0+x1t
    (16)

    式中:x(t)为马赫盘距膛口位移(mm);膛口为坐标原点;x0=152.2mmx1为线性增长因子,x1=0.35m/s

    为了进一步研究不同介质中的弹丸速度衰减规律,图15给出了两种介质中弹丸速度随时间变化的曲线,弹头出膛口记为零时刻,从图15中可以看出,水下发射时,当弹头与水接触后,弹丸速度开始迅速衰减,直到弹丸全部出膛后一直呈线性衰减,而在空气中发射时,弹丸刚飞出膛口后,弹丸在火药燃气作用下先加速运动,当弹丸摆脱燃气流作用后,在空气阻力作用下,弹丸速度又开始缓慢衰减。

    图  15  不同介质中弹丸速度随时间变化曲线
    Figure  15.  Variation of projectile velocitywith time in different media

    利用30 mm火炮建立了水下密封式发射数值模型,模拟了火炮水下发射时的膛口流场演变过程,通过对火炮在空气中和水下发射时的膛口流场特性进行对比分析,发现两种不同介质环境下的膛口流场特性存在较大的不同。

    (1)水下密封式发射时,弹丸在膛内所受的阻力与空气中发射时基本相同,水下发射时的膛内最大压力只比空气中发射时高7 MPa,弹丸出膛口时受到水的阻力较大,弹丸初速比空气中发射时降低了32 m/s,弹丸初速的降低使得膛口压力和温度比空气中发射时分别升高54.8%和10.6%。

    (2)弹丸出膛口后,两种发射环境下的燃气射流膛口压力均随时间呈衰减趋势,水下发射时燃气膨胀受水的阻碍,燃气压力始终高于空气中发射;弹丸入水后,弹丸头部产生的压力远高于膛口核心区的燃气压力,而弹丸在空气中飞行时,弹丸头部产生的压力却远低于膛口核心区的燃气压力。

    (3)水下密封式发射时,膛口附近会有气液夹带,而空气中发射时,低密度的空气对射流尾翼没有较大的影响;火药燃气射流受气液界面的相互作用影响,在140 μs时初步形成马赫盘结构,而空气中发射时马赫盘结构形成较晚,约在320 μs时形成;水下发射时的激波核心区面积明显小于空气中发射时的激波核心区面积。水下密封式发射时,马赫盘距离膛口轴向位移随时间变化呈指数增长;而空气中发射时,马赫盘距离膛口位置随时间变化呈线性增长。

    本文中在计算和分析时暂未考虑弹体高速运动在水中的冲击波效应及空穴效应,在后续的工作中将会进一步研究冲击波效应及空穴效应对膛口流场演化过程的影响规律。

  • 图  1  弹体结构参数示意图

    Figure  1.  Schematic diagram of projectile structural parameters

    图  2  加工后的三种截面弹体

    Figure  2.  Three types of projectiles after manufacture

    图  3  弹体材料的准静态拉伸曲线

    Figure  3.  Quasi-static tensile curves of projectile material

    图  4  试验系统示意图

    Figure  4.  Schematic diagram of experimental system

    图  5  弹体侵彻过程的典型时刻

    Figure  5.  Typical moments for different projectiles during penetration process

    图  6  斜侵彻中弹体不同角度参数及截面布置示意图

    Figure  6.  Diagram for the altitude angles and cross section of the projectile in oblique penetration

    图  7  弹体的破坏情况

    Figure  7.  Damages of projectiles

    图  8  不同入射速度下弹体的载荷时程曲线

    Figure  8.  Time history curves of projectile load under different impact velocities

    图  9  弹体侵彻轨迹的对比

    Figure  9.  Comparison of simulated and experimental results on penetration trajectories

    图  10  弹体速度对比

    Figure  10.  Comparison of projectile velocities

    图  11  不同弹体的动能对比

    Figure  11.  Comparison of kinetic energies of different projectiles

    图  12  弹体姿态角对比

    Figure  12.  Comparison of projectile attitude angles

    图  13  弹体剩余长度对比

    Figure  13.  Comparison of projectile residual lengths

    图  14  弹体载荷时程曲线

    Figure  14.  Time history curves of projectile load

    图  15  弹体侵彻的不同阶段

    Figure  15.  Penetration stages of projectile

    图  16  弹体的失效模式

    Figure  16.  Failure modes of projectile

    图  17  三种弹体的姿态角对比

    Figure  17.  Comparison of attitude angle among three different projectiles

    图  18  横向载荷作用下的自由梁模型

    Figure  18.  Free-free beam model for the projectile under lateral load

    图  19  无量纲弯矩分布

    Figure  19.  Distribution of dimensionless bending moment

    图  20  移动载荷作用下弹体的屈服函数

    Figure  20.  Yield function of projectile under moving load

    表  1  三种截面弹体的结构参数

    Table  1.   Structural parameters of three projectiles with different cross-sections

    截面形状截面参数/mmL/mmh/mmm/g
    DAB
    圆形301804506.2
    椭圆形33271804509.2
    非对称椭圆形3318/91804519.5
    下载: 导出CSV

    表  2  弹体侵彻不同靶板的试验结果

    Table  2.   Penetration experimental results

    试验编号靶板编号靶板厚度/mm速度姿态角长度
    v0/(m·s−1)v1/(m·s−1)ΔE/Jθ0/(°)θ1/(°)Δθ/(°)l0/mml1/mmδ/%
    CC-11847442511012−2.64−7.56−4.9218014581
    264253887520−4.95−9.88−4.93145145100
    CC-214445413686416.1715.65−0.5218013675
    24413387520013.6811.31−2.37136136100
    CC-3186085441843214.6820.816.1318013374
    285444532268119.9527.477.52133133100
    CC-4112499409204303.150−3.15180180100
    2840934811544−2.23−13.95−11.7218010961
    EC-11848644210208−2.12−6.37−4.2518014379
    264424048037−3.23−4.85−1.62143143100
    EC-21849345394600−2.23−2.23180180100
    264534168038−3.28−8.94−5.6618013877
    AC-11848943512474−1.60−8.65−7.0518012872
    264353899476−5.44−10.75−5.31128128100
    AC-2184734299922−2.77−9.54−6.77180180100
    264293957004−7.24−13.89−6.6518013374
    下载: 导出CSV

    表  3  弹体30CrMnSiNi2A材料参数[31]

    Table  3.   Material parameters of 30CrMnSiNi2A[31]

    ρ/(g·cm−3) E/GPa v Tr/K Tm/K A/MPa B/MPa n m C ˙ε0/s−1 εT
    7.85 210 0.3 294 1760 1600 810 0.479 1 0.04 2.1×10−3 0.05
    下载: 导出CSV

    表  4  靶板45钢材料参数[32]

    Table  4.   Material parameters of 45 steel[32]

    ρ/(g·cm−3) E/GPa v A/MPa B/MPa n m C
    7.8 210 0.33 507 320 0.28 1.06 0.064
    Tr/K Tm/K ˙ε0/s−1 D1 D2 D3 D4 D5
    294 1760 1 0.1 0.76 1.57 0.005 −0.84
    下载: 导出CSV

    表  5  弹体剩余长度的不同结果对比

    Table  5.   Comparison of results on projectile residual length

    弹型试验结果数值仿真结果理论模型结果理论模型相对误差/%
    圆形0.810.780.757.41
    椭圆形0.780.750.736.42
    非对称椭圆0.720.740.711.38
    下载: 导出CSV
  • [1] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [2] CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. DOI: 10.1016/j.ijimpeng.2003.08.003.
    [3] LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [4] 段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [5] 闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015.
    [6] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [7] GUPTA N K, MADHU V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates [J]. International Journal of Impact Engineering, 1997, 19(5/6): 395–414. DOI: 10.1016/S0734-743X(97)00001-8.
    [8] IQBAL M A, DIWAKAR A, RAJPUT A, et al. Influence of projectile shape and incidence angle on the ballistic limit and failure mechanism of thick steel plates [J]. Theoretical and Applied Fracture Mechanics, 2012, 62: 40–53. DOI: 10.1016/j.tafmec.2013.01.005.
    [9] IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [10] 杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [11] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [12] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [13] 刘子豪. 椭圆截面异型弹体高速侵彻混凝土特性研究 [D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000438.

    LIU Z H. Study on the characteristics of high-speed elliptical cross section projectile penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000438.
    [14] DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
    [15] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–11.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–11.
    [16] 田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.

    TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
    [17] 岳胜哲, 陈利, 张晓伟, 等. 非对称类椭圆截面弹体斜贯穿铝靶数值模拟研究 [J]. 兵器装备工程学报, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.

    YUE S Z, CHEN L, ZHANG X W, et al. Numerical simulation of oblique penetration of shaped elliptical cross section projectile through aluminum target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.
    [18] 王景琛, 张晓伟, 张庆明, 等. 非圆截面弹体斜侵彻薄靶的动态载荷特性研究 [J]. 兵器装备工程学报, 2023, 44(1): 127–135. DOI: 10.11809/bqzbgcxb2023.01.020.

    WANG J C, ZHANG X W, ZHANG Q M, et al. Study on dynamic load characteristics of a non-circular cross-section projectile obliquely penetrating into thin targets [J]. Journal of Ordnance Equipment Engineering, 2023, 44(1): 127–135. DOI: 10.11809/bqzbgcxb2023.01.020.
    [19] WU H J, WANG Y N, HUANG F L. Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1100 m/s [J]. International Journal of Modern Physics B, 2008, 22(09N11): 1087–1093. DOI: 10.1142/S0217979208046360.
    [20] SILLING S A, FORRESTAL M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [21] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [22] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [23] HE L L, CHEN X W. Analyses of the penetration process considering mass loss [J]. European Journal of Mechanics-A/Solids, 2011, 30(2): 145–157. DOI: 10.1016/j.euromechsol.2010.10.004.
    [24] ZHAO J, CHEN X W, JIN F N, et al. Analysis on the bending of a projectile induced by asymmetrical mass abrasion [J]. International Journal of Impact Engineering, 2012, 39(1): 16–27. DOI: 10.1016/j.ijimpeng.2011.09.001.
    [25] 陈小伟. 动能深侵彻弹的力学设计(Ⅰ): 侵彻/穿甲理论和弹体壁厚分析 [J]. 爆炸与冲击, 2005, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.

    CHEN X W. Mechanics of structural design of EPW(Ⅰ): the penetration/perforation theory and the analysis on the cartridge of projectile [J]. Explosion and Shock Waves, 2005, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.
    [26] 陈小伟, 金建明. 动能深侵彻弹的力学设计(Ⅱ): 弹靶的相关力学分析与实例 [J]. 爆炸与冲击, 2006, 26(1): 71–78. DOI: 10.11883/1001-1455(2006)01-0071-08.

    CHEN X W, JIN J M. Mechanics of structural design of EPW(Ⅱ): analyses on the design of EPW projectiles, concrete targets and examples [J]. Explosion and Shock Waves, 2006, 26(1): 71–78. DOI: 10.11883/1001-1455(2006)01-0071-08.
    [27] 皮爱国, 黄风雷. 大长细比弹体斜侵彻混凝土靶的动力学响应 [J]. 爆炸与冲击, 2007, 27(4): 331–338. DOI: 10.11883/1001-1455(2007)04-0331-08.

    PI A G, HUANG F L. Dynamic behavior of a slender projectile on oblique penetrating into concrete target [J]. Explosion and Shock Waves, 2007, 27(4): 331–338. DOI: 10.11883/1001-1455(2007)04-0331-08.
    [28] 王一楠, 黄风雷, 段卓平. 小攻角条件下动能弹体高速侵彻混凝土靶的弹体弯曲 [J]. 爆炸与冲击, 2010, 30(6): 598–606. DOI: 10.11883/1001-1455(2010)06-0598-09.

    WANG Y N, HUANG F L, DUAN Z P. Bending of projectile with small angle of attack during high-speed penetration of concrete targets [J]. Explosion and Shock Waves, 2010, 30(6): 598–606. DOI: 10.11883/1001-1455(2010)06-0598-09.
    [29] 张欣欣, 武海军, 黄风雷, 等. 斜侵彻混凝土靶的刻槽弹体的结构响应 [J]. 爆炸与冲击, 2019, 39(3): 033301. DOI: 10.11883/bzycj-2017-0047.

    ZHANG X X, WU H J, HUANG F L, et al. Structural response of the concrete target obliquely penetrated by a grooved-tapered projectile [J]. Explosion and Shock Waves, 2019, 39(3): 033301. DOI: 10.11883/bzycj-2017-0047.
    [30] 刘坚成, 张雷雷, 徐坤, 等. 反弹道非正侵彻的弹体结构响应实验研究 [J]. 兵工学报, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.

    LIU J C, ZHANG L L, XU K, et al. Structural response of projectile in reverse ballistic non-normal penetrating experiment [J]. Acta Armamentarii, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.
    [31] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [32] CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
  • 期刊类型引用(1)

    1. 张世文,陈艳,但加坤,李英雷,刘明涛,汤铁钢. 爆轰驱动下45钢半球壳膨胀断裂破片回收研究. 高压物理学报. 2023(02): 159-168 . 百度学术

    其他类型引用(0)

  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  133
  • PDF下载量:  255
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-01-17
  • 修回日期:  2023-05-09
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-09-11

目录

/

返回文章
返回