Effect of interlayer material on dynamic mechanical properties of rock mass with combined hard and soft media
-
摘要: 为研究不同夹层材料下软硬介质组合岩体的动态力学性能及变形破坏特征,以砂岩和花岗岩为软硬岩基质,利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)装置,并通过离散格子弹簧法(discrete lattice spring method,DLSM)数值模拟,探究了不同夹层材料下岩体裂纹扩展、夹层界面处的反、透射特性及岩体中能量分配特性。结果表明:不同夹层材料岩体的动态强度增长因子随着岩体动态抗压强度增大而增大,表现出明显的动态抗压强度依赖性。不同夹层材料岩体在加载初始阶段存在明显的非线性段,无夹层岩体砂岩内部闭合的孔隙及裂隙在应力开始作用阶段最久且非线性段最长。随着夹层材料强度的增大,夹层对岩体的裂纹扩展和发育的阻碍能力逐渐较弱,岩体产生裂纹和破坏需要消耗的能量逐渐降低。夹层岩体的破坏开始于夹层胶结面处,随着夹层材料强度的增大,软岩靠近胶结面一侧破坏逐渐加剧,硬岩无明显破坏。含夹层岩体具有很好的削波作用,随着夹层材料强度的降低,两端面应力峰值在逐渐降低,夹层岩体短时间内获得的能量吸收密度增大,稳定性降低,容易被破坏。Abstract: A split Hopkinson pressure bar (SHPB) device was used to study the dynamic mechanical properties and deformation and failure characteristics of the rock mass combined with different sandwich materials, using sandstone and granite as the soft and hard rock matrix. The discrete lattice spring method (DLSM) was used to further investigate the crack propagation, the reaction and transmission at the interlayer interface and the energy distribution characteristics of rock mass combined with different interlayer materials. The results show that the growth factor of rock mass dynamic strength increases with the increase of rock mass dynamic compressive strength, showing an obvious dynamic compressive strength dependence. The rock mass combined with different interlayer materials has a obvious nonlinear section in the initial loading stage, and the closed pores and cracks in the sandstone of non-interlayer rock have the longest nonlinear section in the initial stress stage. With the increase of the strength of interlayer material, the obstacle ability of interlayer to crack propagation and development of rock mass gradually becomes weak, and the energy consumption of rock mass crack and failure is gradually reduced. The failure of the intercalated rock mass starts at the cementation surface of the intercalated rock mass. With the increase of the strength of the intercalated material, the failure of the soft rock near the cementation surface is gradually intensified, while the hard rock has no obvious failure. The rock mass with interlayer has a good clipping effect. With the decrease of the strength of interlayer material, the peak stress value of both ends gradually increases and decreases, whilst the energy absorption density of the interlayer rock mass increases in a short time, and the stability becomes worse, so it is easy to be destroyed.
-
Key words:
- intercalated rock mass /
- crack propagation /
- SHPB /
- discrete lattice spring method
-
表 1 岩石基本物理力学参数
Table 1. Basic physical and mechanical parameters of rock
岩石种类 密度/(g·cm−3) 波速/(m·s−1) 波阻抗/(kg·m−2·s−1) 单轴抗压强度/MPa 普氏系数 砂岩 2.48 3350 8308 38.5 3.85 花岗岩 2.63 5415 14241 146.0 14.60 表 2 夹层材料基本物理力学参数
Table 2. Basic physical and mechanical parameters of sandwich material
材料类别 密度/(g·cm−3) 抗压强度/MPa 弹性模量/GPa 泊松比 内聚力/MPa A材料 1.73 14.5 19.6 0.3 13.9 B材料 1.84 26.9 26.4 0.32 17.2 石膏 1.06 2.5 0.96 0.25 - 表 3 不同夹层材料岩体的峰值强度
Table 3. Peak strength of rock mass with different interlayer materials
试件编号 夹层材料 加载气压/MPa 冲击速度/(m·s−1) 动态抗压强度/MPa 平均值/MPa WJC-1 无 0.33 8.832 64.60 64.56 0.33 WJC-2 9.171 64.52 JCA-1 A材料 0.33 8.754 47.84 47.63 0.33 JCA-2 9.130 47.42 JCB-1 B材料 0.33 8.731 58.85 58.24 0.33 JCB-2 8.457 57.63 JCS-1 石膏 0.33 8.735 33.13 33.47 JCS-2 0.33 9.256 33.81 表 4 不同夹层材料岩体的能耗
Table 4. Energy consumption of rock mass with different sandwich materials
夹层材料 夹层厚度/mm 试件编号 入射能Ei/J 反射能Er/J 透射能Et/J 耗散能Ed/J 碎块质量/g 试验值 平均值 试验值 平均值 试验值 平均值 试验值 平均值 试验值 平均值 无夹层 10 WJC-1 364.26 364.21 95.62 96.01 126.77 127.86 138.31 140.34 196.68 188.75 WJC-2 364.16 96.40 129.01 142.37 180.82 A材料 10 JCA-1 363.34 365.43 151.28 151.52 68.10 67.20 139.80 146.71 57.54 57.06 JCA-2 367.52 151.76 66.30 153.62 56.58 B材料 10 JCB-1 365.02 364.70 124.44 122.13 101.08 99.35 139.50 143.22 137.81 135.56 JCB-2 364.38 119.82 97.62 146.94 133.31 石膏 10 JCS-1 367.70 364.86 172.00 176.40 35.29 33.09 156.66 155.37 13.29 14.85 JCS-2 362.02 180.80 30.89 154.08 16.41 -
[1] 夏才初, 孙宗颀. 工程岩体节理力学 [M]. 上海: 同济大学出版社, 2002.XIA C C, SUN Z X. Engineering rock joint mechanics [M]. Shanghai: Tongji University Press, 2002. [2] KIM Y, LEE Y, DO S. Basic study on shear characteristics of filled rock joint [J]. Tunnel and Underground Space, 2004, 14(5): 318–326. [3] VOSNIAKOS K, PATRONIS C, LANE P. Physical and numerical study of shear behavior of filled rock joints using DEM [J]. Journal of Environmental Protection and Ecology, 2010, 11(4): 1591–1602. [4] 董永香, 黄晨光, 段祝平. 多层介质对应力波传播特性影响分析 [J]. 高压物理学报, 2005, 19(1): 59–65. DOI: 10.3969/j.issn.1000-5773.2005.01.011.DONG Y X, HUANG C G, DUAN Z P. Influence of multilayer media on stress wave propagation characteristics [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 59–65. DOI: 10.3969/j.issn.1000-5773.2005.01.011. [5] 刘传正, 张建经, 崔鹏. 岩体夹层应力波能量演化及应力响应特征分析 [J]. 岩土力学, 2018, 33(6): 2267–2277. DOI: 10.16285/j.rsm.2016.1836.LIU C Z, ZANG J J, CUI P. Evolution of laminated rock mass stress wave energy and stress response characteristics analysis [J]. Rock and Soil Mechanics, 2018, 33(6): 2267–2277. DOI: 10.16285/j.rsm.2016.1836. [6] 田振农, 张乐文. 岩体中软弱夹层影响爆炸波传播规律的数值分析 [J]. 沈阳工业大学学报, 2010, 32(3): 349–354.TIAN Z N, ZHANG L W. Numerical analysis of blast wave propagation in rock mass containing weak interlayer [J]. Journal of Shenyang University of Technology, 2010, 32(3): 349–354. [7] JIA S L, WANG Z L, WANG J G, et al. Experimental and theoretical study on the propagation characteristics of stress wave in filled jointed rock mass [J]. Plos One, 2021, 16(9): 392–405. DOI: 10.1371/journal.pone.0253392. [8] 杨仁树, 王茂源, 杨阳, 等. 夹层材料对节理岩石动力学性能影响的模拟试验 [J]. 振动与冲击, 2016, 35(12): 125–131. DOI: 10.13465/j.cnki.jvs.2016.12.019.YANG R S, WANG M Y, YANG Y, et al. Simulation test of effect of filling materials on dynamic performance of jointed rock [J]. Journal of Vibration and Shock, 2016, 35(12): 125–131. DOI: 10.13465/j.cnki.jvs.2016.12.019. [9] CHAI S B, WANG H, YU L Y, et al. Experimental study on static and dynamic compression mechanical properties of filled rock joints [J]. Latin American Journal of Solids and Structures, 2020, 17(3): 1590–1605. DOI: 10.1590/1679-78255988. [10] HAN Z Y, LI D Y, LI X B. Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests [J]. International Journal of Mining Science and Technology, 2022, 32(4): 793–806. DOI: 10.1016/J.IJMST.2022.05.008. [11] 杨仁树, 李炜煜, 方士正, 等. 层状复合岩体冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2019, 38(9): 1747–1757. DOI: 10.13722/j.cnki.jrme.2019.0021.YANG R S, LI W Y, FANG S Z, et al. Experimental study on impact dynamics of layered composite rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1747–1757. DOI: 10.13722/j.cnki.jrme.2019.0021. [12] 腾俊洋, 唐建新, 王进博, 等. 层状复合岩体损伤演化规律及分形特征 [J]. 岩石力学与工程学报, 2018, 37(S1): 3263–3278.TENG J Y, TANG J X, WANG J B, et al. Damage evolution and fractal characteristics of layered composite rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3263–3278. [13] DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8. [14] 王鲁明, 赵坚, 华安增, 等. 脆性材料SHPB实验技术的研究 [J]. 岩石力学与工程学报, 2003(11): 1798–1802. DOI: cnki:sun:yslx.0.2003-11-009.WANG L M, ZHAO J, HUA A Z, et al. Study on experimental techniques of SHPB for brittle materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2003(11): 1798–1802. DOI: cnki:sun:yslx.0.2003-11-009. [15] 陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究 [J]. 爆炸与冲击, 2004, 24(5): 413–418.TAO J L, TIAN C J, CHEN Y Z, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413–418. [16] 卢芳云, 陈玉亮. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013.LU F Y, CHEN Y L. Hopkinson bar experiment technique [M]. Beijing: Science Press, 2013. [17] 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 25(3): 207–216.SONG L, HU S S. Uniformity and constant strain rate in SHPB test [J]. Explosion and Shock waves, 2005, 25(3): 207–216. [18] 刘军忠, 许金余, 吕晓聪, 等. 冲击压缩荷载下角闪岩的动态力学性能试验研究 [J]. 岩石力学与工程学报, 2009, 28(10): 2113–2120. DOI: 10.3321/j.issn:1000-6915.2009.10.020.LIU J Z, XU J Y, LU X C, et al. Experimental study on dynamic mechanical properties of amphibolite under impact compression load [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2113–2120. DOI: 10.3321/j.issn:1000-6915.2009.10.020. [19] 赵高峰, 乔磊, 张玉良, 等. 适用于非均质岩石破坏模拟的偏心四维弹簧模型 [J]. 清华大学学报(自然科学版), 2021, 61(8): 818–826. DOI: 10.16511/j.cnki.qhdxxb.2021.26.014.ZHAO G F, QIAO L, ZHANG Y L, et al. Eccentric four-dimensional lattice spring model for heterogeneous rock fracturing [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(8): 818–826. DOI: 10.16511/j.cnki.qhdxxb.2021.26.014. [20] ZHAO G F, FANG J, ZHAO J. A 3D distinct lattice spring model for elasticity and dynamic failure [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35: 859–885. DOI: 10.1002/nag.930. [21] ZHAO G F, JIANG C. Implementation of a coupled plastic damage distinct lattice spring model for dynamic crack propagation in geomaterials [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(4): 674–693. DOI: 10.1002/nag.2761. [22] 王雁冰. 爆炸的动静作用破岩与动态裂纹扩展机理研究 [D]. 北京: 中国矿业大学(北京), 2016.WANG Y B. Study on the mechanism of rock breaking and dynamic crack propagation under the dynamic and static action of explosion [D]. Beijing: China University of Mining and Technology (Beijing), 2016.