基于多项式混沌方法对C-J爆轰参数不确定度的分析

梁霄 王瑞利 胡星志 陈江涛

梁霄, 王瑞利, 胡星志, 陈江涛. 基于多项式混沌方法对C-J爆轰参数不确定度的分析[J]. 爆炸与冲击, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030
引用本文: 梁霄, 王瑞利, 胡星志, 陈江涛. 基于多项式混沌方法对C-J爆轰参数不确定度的分析[J]. 爆炸与冲击, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030
LIANG Xiao, WANG Ruili, HU Xingzhi, CHEN Jiangtao. Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory[J]. Explosion And Shock Waves, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030
Citation: LIANG Xiao, WANG Ruili, HU Xingzhi, CHEN Jiangtao. Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory[J]. Explosion And Shock Waves, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030

基于多项式混沌方法对C-J爆轰参数不确定度的分析

doi: 10.11883/bzycj-2023-0030
基金项目: 国家自然科学基金(12171047);国家自然科学基金-中国工程物理研究院联合基金(U2230208);国家数值风洞工程(NNW2019ZT7-A13);山东省自然科学基金(ZR2021MA056)
详细信息
    作者简介:

    梁 霄(1984- ),男,博士,副教授,mathlx@163.com

    通讯作者:

    王瑞利(1964- ),男,博士,研究员, wang_ruili@iapcm.ac.cn

  • 中图分类号: O383

Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory

  • 摘要: Chapman-Jougeut理论是预测波后爆轰物理量状态的有力工具,但以往的研究未考虑模型中的不确定因素及其影响。事实上,不确定度会影响数值模拟的预测能力和可靠性。首先,通过剖析爆轰机理,深入挖掘爆轰建模与模拟中的不确定因素。假设PBX-9502的初始密度和爆速服从对数正态分布,结合真实的试验数据,通过参数估计和Anderson-Darling假设检验法标定初始密度和爆速的概率密度函数。Beta分布用以定量刻画没有物理意义的、唯象参数的不确定度,形状参数和支集源于工程经验。Rosenblatt变换将相关的、非Gauss随机变量转化成相互独立的标准正态分布。然后,使用非嵌入多项式混沌研究高维爆轰不确定度传播。具体而言,针对一元多项式混沌,正交多项式通过Gauss-Hilbert空间中的Gram-Schmidt方法导出,六点Gauss求积方法用以计算多项式混沌的系数。使用权重和Gauss求积点的全张量积计算多元多项式混沌。最后,通过多元多项式混沌得到感兴趣量的概率密度函数以及对应的期望、标准差和置信区间等Gauss统计量。研究结果表明:波后压力波动较大,置信区间较宽,与孙承纬的“爆轰压力测量值分散性较大”的结论相吻合。同时感兴趣量的试验结果落入模拟结果的置信区间内,研究结果能增强模型的可靠性和鲁棒性。所用方法可扩展到更加复杂状态方程的爆轰系统。
  • 图  1  爆轰波在高能炸药中的传播示意图

    Figure  1.  Sketch of propagation of detonation wave into high explosive

    图  2  PBX-9502初始密度的概率密度函数

    Figure  2.  PDF of initial density of PBX-9502

    图  3  PBX-9502爆速的概率密度函数

    Figure  3.  PDF of detonation velocity of PBX-9502

    图  4  多方指数γ的概率密度函数

    Figure  4.  PDF of polytrophic exponent γ

    图  5  不确定分析算法流程图

    Figure  5.  Flow chart of uncertainty analysis

    图  6  二维全张量积Gauss-Hermite求积点的位置

    Figure  6.  Locations of Gauss-Hermite quadrature points used for two-dimensional tensor product

    图  7  前6阶单变量Hermite多项式

    Figure  7.  The first six orders of univariate Hermite polynomials

    图  8  系统响应量的概率密度函数

    Figure  8.  PDF of system response quantities

    表  1  6节点Hermite-Gauss积分的求积点和权重[21]

    Table  1.   Quadrature points and weights for Hermite-Gauss integration with six points[21]

    $ \xi_{r} $ $ w_{i} $ $ \xi_{r} $ $ w_{i} $ $ \xi_{r} $ $ w_{i} $
    –3.324 26 0.002 56 –0.616 71 0.408 83 1.889 18 0.088 62
    –1.889 18 0.088 62 0.616 71 0.408 83 3.324 26 0.002 56
    下载: 导出CSV

    表  2  波后感兴趣量的试验和统计结果

    Table  2.   Statistical and experimental result of QoIs at the rear of the shock wave

    波后感兴趣量 ρJ/(g·cm−3) UJ/(m·s−1) pJ/GPa
    平均值 2.529 1 943 28.410
    置信区间下限 2.524 1 789 24.010
    置信区间上限 2.534 2 108 33.390
    试验数据[24] 2.525 1 922 28.301
    标准差 0.003 81 2.376
    下载: 导出CSV
  • [1] MADER C. Numerical modeling of explosives and propellants [M]. Boston: CRC Press, 2008.
    [2] LIANG X, WANG R L, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos [J]. International Journal for Uncertainty Quantification, 2020, 10(1): 83–100. DOI: 10.1615/Int.J.UncertaintyQuantification.2020030630.
    [3] LIANG X, WANG R L. Verification and validation of detonation modeling [J]. Defence Technology, 2019, 15(3): 398–408. DOI: 10.1016/j.dt.2018.11.005.
    [4] 董海山, 周芬芬. 高能炸药及相关物性能 [M]. 北京: 科学出版社, 1989.

    DONG H S, ZHOU F F. High explosive and its physical property [M]. Beijing: Scientific Press, 1989.
    [5] 李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.

    LI W X. One dimensional unstable flow and shock waves [M]. Beijing: National Defense Industrial Press, 2003.
    [6] 孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995.

    SUN J S, ZHU J S. Theoretical detonation physics [M]. Beijing: National Defense Industrial Press, 1995.
    [7] HANDLEY C, LAMBOURN B, WHITWORTH N et al. Understanding the shock and detonation response of high explosives at the continuum and meso scales [J]. Applied Physics Reviews, 2018, 5(1): 11303. DOI: 10.1063/1.5005997.
    [8] 胡晓棉, 潘昊, 吴子辉. 气隙宽度对炸药爆轰过程的影响研究 [C] // 第四届全国计算爆炸力学会议. 2008: 329–333.

    HU X M, PAN H, WU Z H. The influence of gap width on the explosive detonation process [C] // 4th Conference on National Computational Detonation Mechanics. 2008: 329–333.
    [9] LEE E, TARVER C. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362–2371. DOI: 10.1063/1.862940.
    [10] DAVIS W, HILL L. Joints, cracks, holes, and gaps in detonating explosives [C] // 12th International Symposium Detonation. 2002: 11–23.
    [11] SOUERS P, LEWIS P, HOFFMAN M et al. Thermal expansion of LX-17, PBX 9502 and ultrafine TATB: LLNL-TR-457173 [R]. USA: Lawrence Livermore National Laboratory, 2010. DOI: 10.1002/prep.201000119.
    [12] WILLIAMS P. A simple reactive-flow model for corner-turning in insensitive high explosives, including failure and dead zones. Ⅰ. the model [J]. Propellants. Explosives, Pyrotechnics, 2020, 45(3): 1506–1522. DOI: 10.1002/prep.201900383.
    [13] HUGHES K, BALACHANDAR S, KIM N, et al. Forensic uncertainty quantification for experiments on the explosively driven motion of particles [J]. ASME Transaction. Journal of Verification, Validation and Uncertainty Quantification, 2018, 3(1): 041004. DOI: 10.1115/1.4043478.
    [14] 梁霄, 陈江涛, 王瑞利. 高维参数不确定爆轰的不确定度量化 [J]. 兵工学报, 2020, 41(4): 692–701. DOI: 10.3969/j.issn.1000-1093.2020.04.008.

    LIANG X, CHEN J T, WANG R L. Uncertainty quantification of detonation with high-dimensional parameter uncertainty [J]. Acta Armamentarii, 2020, 41(4): 692–701. DOI: 10.3969/j.issn.1000-1093.2020.04.008.
    [15] 戴诚达, 王翔, 谭华. Hugoniot实验的粒子速度测量不确定度分析 [J]. 高压物理学报, 2005, 19(2): 113–119. DOI: 10.11858/gywlxb.2005.02.003.

    DAI C D, WANG X, TAN H. Equation for uncertainty of particle velocity in Hugoniot measurements [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 113–119. DOI: 10.11858/gywlxb.2005.02.003.
    [16] HU X Z, DUAN Y H, WANG R L, LIANG X. An adaptive response surface methodology based on active subspaces for mixed random and interval uncertainties [J]. ASME Transaction Journal of Verification, Validation and Uncertainty Quantification, 2019, 4(1): 021006. DOI: 10.1115/1.4045200.
    [17] GHAUCH Z, AITHARAJU V, RODGERS W, et al. Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions [J]. Composites Part A: Applied Science and Manufacturing, 2019, 118: 179–193. DOI: 10.1016/j.compositesa.2018.12.029.
    [18] TSILIFIS P, GHANEM R. Bayesian adaptation of chaos representations using variational inference and sampling on geodesics [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474: 11350. DOI: 10.1098/rspa.2018.0285.
    [19] WILKINS M. Computer simulation of dynamic phenomena [M]. New York: Springer Press, 1999.
    [20] CAMPBELL A. Diameter effect and failure diameter of a TATB-based explosive [J]. Propellants, Explosives, Pyrotechnics, 1984, 9(6): 183–187. DOI: 10.1002/prep.19840090602.
    [21] THACKER W, SRINIVASAN A, ISKANDARANI M, et al. Propagating boundary uncertainties using polynomial expansions [J]. Ocean Modeling, 2012, 43: 53–63. DOI: 10.1016/j.ocemod.2011.11.011.
    [22] ROSENBLATT W. Remarks on a multivariate transformation [J]. Annals of Mathematical Statistics, 1952, 23(3): 470–472. DOI: 10.1007/978-1-4419-8339-8_8.
    [23] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industrial Press, 2000.
    [24] MENIKOFF R. Complete EOS for PBX 9502: LA-UR-09-06S29 [R]. USA: Lawrence Livermore National Laboratory, 2009.
    [25] OBERKAMPF W, ROY C. Verification and validation in scientific computing [M]. New York: Cambridge University Press, 2010.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  32
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 录用日期:  2023-07-04
  • 修回日期:  2023-04-29
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回