[1] |
刘义涛, 朱明辉, 杨子旭, 等. 煤制化学品: 合成气直接制低碳烯烃催化剂研究进展 [J]. 化工进展, 2021, 40(2): 594–604. DOI: 10.16085/j.issn.1000-6613.22020-1402.LIU Y T, ZHU M H, YANG Z X, et al. Advances of catalysts for direct synthesis of lower olefins from syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594–604. DOI: 10.16085/j.issn.1000-6613.22020-1402.
|
[2] |
余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究 [J]. 爆炸与冲击, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.YU M G, WEI B B, ZHENG K. Effect of inert gas addition on syngas explosion [J]. Explosion and Shock Waves, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.
|
[3] |
李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测 [J]. 爆炸与冲击, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2020-0140.LI Y C, BI M S, GAO W. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation [J]. Explosion and Shock Waves, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2020-0140.
|
[4] |
倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.
|
[5] |
张凯, 杜赛枫, 陈昊, 等. 泄爆和氮气惰化耦合作用对氢-空气爆炸影响的实验研究 [J]. 爆炸与冲击, 2022, 42(12): 125402. DOI: 10.11883/bzycj-2021-0459.ZHANG K, DU S F, CHEN H, et al. Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions [J]. Explosion and Shock Waves, 2022, 42(12): 125402. DOI: 10.11883/bzycj-2021-0459.
|
[6] |
OLM C, ZSÉLY I G, VARGA T, et al. Comparison of the performance of several recent syngas combustion mechanisms [J]. Combustion and Flame, 2015, 162(5): 1793–1812. DOI: 10.1016/j.combustflame.2014.12.001.
|
[7] |
ZHANG Y, SHEN W F, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
|
[8] |
BOUVET N, CHAUVEAU C, GÖKALP I, et al. Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(1): 913–920. DOI: 10.1016/j.proci.2010.05.088.
|
[9] |
ZHANG Y, SHEN W F, FAN M, et al. Laminar flame speed studies of lean premixed H2/CO/air flames [J]. Combustion and Flame, 2014, 161(10): 2492–2495. DOI: 10.1016/j.combustflame.2014.03.016.
|
[10] |
CAO W G, LI W J, ZHANG Y, et al. Experimental study on the explosion behaviors of premixed syngas-air mixtures in ducts [J]. International Journal of Hydrogen Energy, 2021, 46(44): 23053–23066. DOI: 10.1016/j.ijhydene.2021.04.120.
|
[11] |
余明高, 栾鹏鹏, 郑凯, 等. 管道内预混合成气爆炸特性 [J]. 化工学报, 2018, 69(10): 4486–4494. DOI: 10.11949/j.issn.0438-1157.20180610.YU M G, LUAN P P, ZHENG K, et al. Characteristics of premixed syngas/air explosion in horizontal duct [J]. CIESC Journal, 2018, 69(10): 4486–4494. DOI: 10.11949/j.issn.0438-1157.20180610.
|
[12] |
YU M G, LUAN P P, ZHENG K, et al. Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15553–15564. DOI: 10.1016/j.ijhydene.2019.04.046.
|
[13] |
YANG X F, YU M G, ZHENG K, et al. On the propagation dynamics of lean H2/CO/air premixed flame [J]. International Journal of Hydrogen Energy, 2020, 45(11): 7210–7222. DOI: 10.1016/j.ijhydene.2019.12.116.
|
[14] |
YANG X F, YU M G, ZHENG K, et al. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct [J]. Fuel, 2020, 267: 117200. DOI: 10.1016/j.fuel.2020.117200.
|
[15] |
HAN S X, YU M G, YANG X F, et al. Effects of obstacle position and hydrogen volume fraction on premixed syngas-air flame acceleration [J]. International Journal of Hydrogen Energy, 2020, 45(53): 29518–29532. DOI: 10.1016/j.ijhydene.2020.07.189.
|
[16] |
DIAO S T, WEN X P, GUO Z D, et al. Experimental study of explosion dynamics of syngas flames in the narrow channel [J]. International Journal of Hydrogen Energy, 2022, 47(40): 17808–17820. DOI: 10.1016/j.ijhydene.2022.03.258.
|
[17] |
YAO Z F, DENG H X, ZHAO W L, et al. Experimental study on explosion characteristics of premixed syngas/air mixture with different ignition positions and opening ratios [J]. Fuel, 2020, 279: 118426. DOI: 10.1016/j.fuel.2020.118426.
|
[18] |
YU M G, YANG X F, ZHENG K, et al. Experimental study of premixed syngas/air flame deflagration in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(29): 13676–13686. DOI: 10.1016/j.ijhydene.2018.05.103.
|
[19] |
TRAN M V, SCRIBANO G, CHONG C T, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2018, 43(16): 8152–8160. DOI: 10.1016/j.ijhydene.2018.03.077.
|
[20] |
段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
|
[21] |
DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
|
[22] |
SHAO H, WANG C, YU H K. Effect of copper foam on explosion suppression at different positions in the pipe [J]. Powder Technology, 2020, 360: 695–703. DOI: 10.1016/j.powtec.2019.09.078.
|
[23] |
LONG F Y, DUAN Y L, YU S W, et al. Effect of porous materials on explosion characteristics of low ratio hydrogen/methane mixture in barrier tube [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104875. DOI: 10.1016/j.jlp.2022.104875.
|
[24] |
WANG J, LIU G L, ZHENG L G, et al. Effect of opening blockage ratio on the characteristics of methane/air explosion suppressed by porous media [J]. Process Safety and Environmental Protection, 2022, 164: 129–141. DOI: 10.1016/j.psep.2022.06.008.
|
[25] |
WU Q F, YU M G, ZHENG K. Experimental investigation on the effect of obstacle position on the explosion behaviors of the non-uniform methane/air mixture [J]. Fuel, 2022, 320: 123989. DOI: 10.1016/j.fuel.2022.123989.
|
[26] |
XIAO H H, DUAN Q L, SUN J H. Premixed flame propagation in hydrogen explosions [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1988–2001. DOI: 10.1016/j.rser.2017.06.008.
|
[27] |
CLANET C, SEARBY G. On the “tulip flame” phenomenon [J]. Combustion and Flame, 1996, 105(1/2): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
|
[28] |
ZHOU L, GAO D Z, ZHAO J F, et al. Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates [J]. Combustion and Flame, 2018, 191: 453–467. DOI: 10.1016/j.combustflame.2018.01.023.
|
[29] |
CAO X Y, ZHOU Y Q, WANG Z R, et al. Experimental research on hydrogen/air explosion inhibition by the ultrafine water mist [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23898–23908. DOI: 10.1016/j.ijhydene.2022.05.165.
|
[30] |
DUAN Y L, LONG F Y, HUANG J, et al. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27237–27249. DOI: 10.1016/j.ijhydene.2022.06.065.
|
[31] |
YANG X F, YU M G, ZHENG K, et al. An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct [J]. Fuel, 2019, 237: 619–629. DOI: 10.1016/j.fuel.2018.10.055.
|
[32] |
LI H W, GUO J, TANG Z S, et al. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct [J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598–20605. DOI: 10.1016/j.ijhydene.2019.06.029.
|