微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性

郭瑞 李南 张新燕 张延松 徐畅 张公妍 赵兴 解雨萱 韩喆林

郭瑞, 李南, 张新燕, 张延松, 徐畅, 张公妍, 赵兴, 解雨萱, 韩喆林. 微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性[J]. 爆炸与冲击, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058
引用本文: 郭瑞, 李南, 张新燕, 张延松, 徐畅, 张公妍, 赵兴, 解雨萱, 韩喆林. 微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性[J]. 爆炸与冲击, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058
GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058
Citation: GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058

微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性

doi: 10.11883/bzycj-2023-0058
基金项目: 国家自然科学基金(51904170, 51974179);山东省自然科学基金(ZR2018BEE006, ZR2019MEE118)
详细信息
    作者简介:

    郭 瑞(1997- ),女,硕士研究生,gr9709242021@163.com

    通讯作者:

    张新燕(1987- ),女,博士,副教授,xyzhang_safety@sdust.ecu.cn

  • 中图分类号: O383

Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion

  • 摘要: 为了揭示微米/纳米PMMA (polymethyl methacrylate)粉尘爆炸的抑制机理,利用同步热分析仪和20 L爆炸试验装置,对微米/纳米PMMA粉尘在抑爆粉剂NaHCO3干预下的热解动力学特性和爆炸特性展开了实验研究,分析了惰化爆炸混合体系的爆炸压力特性参数与热化学动力学参数的相关性,并探讨了基于热化学动力学的粉尘爆炸抑制机理。结果表明:NaHCO3通过物理化学协同抑制作用影响了微米/纳米PMMA粉尘的热解及氧化进程,提高了爆炸混合体系的活化能,减弱了爆炸强度;且抑爆剂粒度越小、添加比例越大,爆炸混合体系的表观活化能越大;与最大爆炸压力相比较,最大爆炸压力上升速率对爆炸体系活化能的敏感度较高,而纳米PMMA粉尘对爆炸混合体系活化能的敏感度大于微米PMMA粉尘,抑爆效果也更显著。
  • 图  1  30 μm和100 nm PMMA粉尘的粒度分布

    Figure  1.  Particle size distribution characteristics of 30 μm and 100 nm PMMA dusts

    图  2  微米/纳米混合粉尘的扫描电镜图像

    Figure  2.  Scanning electron microscope images of micro/nano mixed dusts

    图  3  同步热分析仪

    Figure  3.  A synchronous thermal analyzer

    图  4  20 L爆炸测试装置

    Figure  4.  A 20-L explosion test device

    图  5  30 μm、100 nm PMMA及质量分数37% NaHCO3干预下的微米/纳米PMMA混合粉尘的热分析曲线

    Figure  5.  Thermal analysis curves of 30 μm, 100 nm PMMA dusts and micro/nano mixed dusts with 37% NaHCO3

    图  6  30 μm、100 nm PMMA及添加NaHCO3的微米/纳米混合粉尘的热解转化率

    Figure  6.  Pyrolysis conversion rates of 30 μm and 100 nm PMMA dusts as well as micro/nano mixed dusts with NaHCO3

    图  7  30 μm与100 nm PMMA粉尘爆炸最大爆炸压力和最大爆炸压力上升速率的对比

    Figure  7.  Comparisons of the maximum explosion pressures and the maximum explosion pressure rise rates between 30 μm and 100 nm PMMA dusts

    图  8  53 μm NaHCO3的质量分数对30 μm和100 nm PMMA粉尘爆炸特性参数的影响

    Figure  8.  Effect of mass fraction of 53 μm NaHCO3 on the explosion characteristic parameters of 30 μm and 100 nm PMMA dust

    图  9  不同粒度NaHCO3对最适爆炸浓度下30 μm和100 nm PMMA粉尘爆炸特性参数的影响

    Figure  9.  Effect of particle size of NaHCO3 on the explosion characteristic parameters of 30 μm and 100 nm PMMA dusts at the optimal explosion concentration

    图  10  微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性

    Figure  10.  Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion

    图  11  NaHCO3对微米/纳米PMMA粉尘爆炸抑制机理物理模型

    Figure  11.  Suppression mechanism of NaHCO3 on micro/nano PMMA dust explosion

    表  1  30 μm和100 nm PMMA及不同质量添加比例的NaHCO3干预下微米/纳米混合粉尘的热分析参数

    Table  1.   Thermal analysis parameters of 30 μm and 100 nm PMMA dusts as well as micro/nano mixed dustswith different mass ratios of NaHCO3

    样品 热解反应持续时间/min 失重率/% 平均热解反应速率/(%∙min−1)
    快速热解阶段 慢速热解阶段
    30 μm PMMA 128 140 100 0.37
    30 μm PMMA+37% NaHCO3 98 426 70.5 0.13
    30 μm PMMA+54% NaHCO3 96 429 63.1 0.12
    100 nm PMMA 122 62 100 0.54
    100 nm PMMA+37% NaHCO3 115 386 74.8 0.15
    100 nm PMMA+54% NaHCO3 113 388 66.0 0.13
    下载: 导出CSV

    表  2  30 μm PMMA及添加NaHCO3的微米混合粉尘在不同升温速率下的动力学参数

    Table  2.   Kinetic parameters of 30 μm PMMA and micro mixed dusts with NaHCO3 at different heating rates

    样品 升温速率/(K∙min−1 活化能/(kJ∙mol−1 指前因子/min−1 机理函数
    30 μm PMMA 5 219.82 2.75×1019 F4模型
    10 209.43 6.89×1018 F4模型
    15 224.23 2.18×1020 F4模型
    平均值 217.83 8.41×1019
    30 μm PMMA+NaHCO3 5 277.27 5.95×1023 F3模型
    10 265.22 3.37×1022 F3模型
    15 263.01 1.01×1022 F3模型
    平均值 268.50 2.13×1023
    下载: 导出CSV

    表  3  100 nm PMMA及添加NaHCO3的纳米混合粉尘在不同升温速率下的动力学参数

    Table  3.   Kinetic parameters of 100 nm PMMA and nano-mixed dusts with NaHCO3 at different heating rates

    样品 升温速率/(K∙min−1) 活化能/(kJ∙mol−1) 指前因子/min−1 机理函数
    100 nm PMMA 5 179.67 9.25×1014 F2模型
    10 190.56 8.45×1015 F2模型
    15 199.20 5.26×1016 F2模型
    平均值 189.81 2.07×1016
    100 nm PMMA+NaHCO3 5 252.66 2.67×1022 F4模型
    10 244.63 2.48×1021 F4模型
    15 255.93 3.65×1021 F4模型
    平均值 251.07 1.09×1022
    下载: 导出CSV
  • [1] 曾文茹, 李疏芬, 周允基, 等. 聚甲基丙烯酸甲酯热氧化降解的化学动力学研究 [J]. 化学物理学报, 2003, 16(1): 64–68. DOI: 10.3969/j.issn.1674-0068.2003.01.013.

    ZENG W R, LI S F, ZHOU Y J, et al. Chemical kinetics on thermal oxidative degradation of PMMA [J]. Chinese Journal of Chemical Physics, 2003, 16(1): 64–68. DOI: 10.3969/j.issn.1674-0068.2003.01.013.
    [2] FATEH T, RICHARD F, ROGAUME T, et al. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air [J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 423–433. DOI: 10.1016/j.jaap.2016.06.014.
    [3] VIGNES A, KRIETSCH A, DUFAUD O, et al. Course of explosion behaviour of metallic powders: from micron to nanosize [J]. Journal of Hazardous Materials, 2019, 379: 120767. DOI: 10.1016/j.jhazmat.2019.120767.
    [4] YUAN Z, KHAKZAD N, KHAN F, et al. Dust explosions: a threat to the process industries [J]. Process Safety and Environmental Protection, 2015, 98: 57–71. DOI: 10.1016/j.psep.2015.06.008.
    [5] WEI L J, SU M Q, WANG K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4/polyethylene dust [J]. Fuel, 2022, 310: 122159. DOI: 10.1016/j.fuel.2021.122159.
    [6] AMYOTTE P R. Some myths and realities about dust explosions [J]. Process Safety and Environmental Protection, 2014, 92(4): 292–299. DOI: 10.1016/j.psep.2014.02.013.
    [7] WANG Q H, YANG S P, JIANG J C, et al. Flame propagation and spectrum characteristics of CH4-air gas mixtures in a vertical pressure relief pipeline [J]. Fuel, 2022, 317: 123413. DOI: 10.1016/j.fuel.2022.123413.
    [8] YANG J, LI Y H, YU Y, et al. Experimental investigation of the inerting effect of CO2 on explosion characteristics of micron-size Acrylate Copolymer dust [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103979. DOI: 10.1016/j.jlp.2019.103979.
    [9] YANG J, YU Y, LI Y H, et al. Inerting effects of ammonium polyphosphate on explosion characteristics of polypropylene dust [J]. Process Safety and Environmental Protection, 2019, 130: 221–230. DOI: 10.1016/j.psep.2019.08.015.
    [10] ADDAI E K, GABEL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures [J]. Journal of Hazardous Materials, 2016, 307: 302–311. DOI: 10.1016/j.jhazmat.2016.01.018.
    [11] JIANG H P, BI M S, PENG Q K, et al. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2046–2055. DOI: 10.1016/j.renene.2019.10.026.
    [12] HUANG C Y, CHEN X F, YUAN B H, et al. Suppression of wood dust explosion by ultrafine magnesium hydroxide [J]. Journal of Hazardous Materials, 2019, 378: 120723. DOI: 10.1016/j.jhazmat.2019.05.116.
    [13] ZHANG X Y, GAO W, YU J L, et al. Flame propagation mechanism of nano-scale PMMA dust explosion [J]. Powder Technology, 2020, 363: 207–217. DOI: 10.1016/j.powtec.2019.12.056.
    [14] ZHANG X Y, GAO W, YU J L, et al. Effect of flame propagation regime on pressure evolution of nano and micron PMMA dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104037. DOI: 10.1016/j.jlp.2019.104037.
    [15] ZHANG X Y, YU J L, YAN X Q, et al. Flame propagation behaviors of nano- and micro-scale PMMA dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 101–111. DOI: 10.1016/j.jlp.2015.12.010.
    [16] ZHOU J H, LI B, MA D Q, et al. Suppression of nano-polymethyl methacrylate dust explosions by ABC powder [J]. Process Safety and Environmental Protection, 2019, 122: 144–152. DOI: 10.1016/j.psep.2018.11.023.
    [17] ZHOU J H, JIANG H P, ZHOU Y H, et al. Flame suppression of 100 nm PMMA dust explosion by KHCO3 with different particle size [J]. Process Safety and Environmental Protection, 2019, 132: 303–312. DOI: 10.1016/j.psep.2019.10.027.
    [18] GAN B, LI B, JIANG H P, et al. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives [J]. Journal of Hazardous Materials, 2018, 351: 346–355. DOI: 10.1016/j.jhazmat.2018.03.017.
    [19] GAO W, MOGI T, SUN J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber [J]. Fuel, 2013, 113: 86–96. DOI: 10.1016/j.fuel.2013.05.071.
    [20] GAO W, ZHONG S J, MOGI T, et al. Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 186–196. DOI: 10.1016/j.jlp.2012.10.007.
    [21] LIU A H, CHEN J Y, HUANG X F, et al. Explosion parameters and combustion kinetics of biomass dust [J]. Bioresource Technology, 2019, 294: 122168. DOI: 10.1016/j.biortech.2019.122168.
    [22] LI Q Z, ZHANG G Y, ZHENG Y N, et al. Investigation on the correlations between thermal behaviors and explosion severity of aluminum dust/air mixtures [J]. Powder Technology, 2019, 355: 582–592. DOI: 10.1016/j.powtec.2019.07.090.
    [23] JIANG H P, BI M S, GAO Z H, et al. Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions [J]. Energy, 2022, 239: 122246. DOI: 10.1016/j.energy.2021.122246.
    [24] JIANG H P, BI M S, HUANG L, et al. Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions [J]. Energy, 2022, 239: 121987. DOI: 10.1016/j.energy.2021.121987.
    [25] YAN X Q, YU J L. Dust explosion venting of small vessels at the elevated static activation overpressure [J]. Powder Technology, 2014, 261: 250–256. DOI: 10.1016/j.powtec.2014.04.043.
    [26] Explosive atmospheres: Part 20-2: Material characteristics: Combustible dusts test methods: Technical Corrigendum 1: ISO/IEC 80079-20-2: 2016/Cor 1: 2017 [S]. Geneva: International Electrotechnical Commission, 2017.
    [27] 张公妍, 张延松, 陈昆, 等. 模式拟合法和无模式函数法对月桂酸热解行为及机理的研究 [J]. 日用化学工业, 2021, 51(4): 265–271. DOI: 10.3969/j.issn.1001-1803.2021.04.001.

    ZHANG G Y, ZHANG Y S, CHEN K, et al. Study on the behavior and mechanism of pyrolysis of lauric acid by model-fitting and model-free methods [J]. China Surfactant Detergent & Cosmetics, 2021, 51(4): 265–271. DOI: 10.3969/j.issn.1001-1803.2021.04.001.
    [28] ZHANG G Y, ZHANG Y S, HUANG X W, et al. Effect of pyrolysis and oxidation characteristics on lauric acid and stearic acid dust explosion hazards [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104039. DOI: 10.1016/j.jlp.2019.104039.
    [29] 曾文茹, 李疏芬, 周允基. 快速升温条件下聚甲基丙烯酸甲酯的燃烧机理 [J]. 高分子材料科学与工程, 2003, 19(6): 183–186. DOI: 10.16865/j.cnki.1000-7555.2003.06.047.

    ZENG W R, LI S F, ZHOU Y J. Study of the combustion mechanism of poly (methyl methacrylate) [J]. Polymer Materials Science and Engineering, 2003, 19(6): 183–186. DOI: 10.16865/j.cnki.1000-7555.2003.06.047.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  71
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-04-23
  • 网络出版日期:  2023-04-28
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回