Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks
-
摘要: 以含不同倾角预制裂纹的长方形板状红砂岩为研究对象,采用分离式霍普金森压杆沿试样宽度方向施加冲击荷载,使用高速摄像机记录裂纹扩展过程,获得试样的裂纹路径特征以及动态压缩强度和动态弹性模量,利用筛分统计法分析试样碎块分布特征,结合分形理论定量描述试样破碎程度及特点,探讨中应变率条件下含裂隙试样裂纹扩展模式与动态力学性质和破碎程度的相互关系。研究结果表明,应变率较高时试样会更多地出现远场裂纹和离层裂纹,并且相比相关低应变率实验结果,中应变率范围内试样破坏模式及裂纹分布情况随应变率的变化规律是不同的。随着应变率的提高,试样大体上从1条拉伸裂纹的临界破坏演变成X形剪切裂纹为主的复杂裂隙网络,并且不同角度预制裂隙对于这种裂纹扩展模式的演变有重要影响。在预制裂纹倾角一定的情况下,岩样动态压缩强度和动态弹性模量表现出明显的应变率效应,不同角度预制裂纹对于试样的应变率敏感性有显著影响。随裂纹倾角的增大,试样的动态强度、动态弹性模量和分形维数表现出的变化趋势具有一定的相似性,大体呈现先减小后增大的趋势,裂纹倾角为45°的试样的动态压缩强度、动态弹性模量和分形维数均为最小。随应变率的升高,不同预制裂纹倾角的试样碎块分布更加分散,应变率越高,预制裂纹倾角对于岩石冲击破碎程度、分形维数的影响越显著。Abstract: In this experiment, finite size red sandstone containing pre-existing single crack was taken as the research object. The ratio of length to width of the samples was set about 0.65. The inclination angle of the pre-crack includes 0°, 30°, 45°, 60° and 90°. A split Hopkinson pressure bar was used for impact test, and a high-speed camera was used to record the crack propagation. The dynamic loads were applied along the width of the samples. Velocities of striker in impact tests were set as 6, 8 and 10 m/s by adjusting the pressure of the air gun. Acquisition frequency of the high-speed camera was set as 75000 s−1. The characteristics of crack propagation, dynamic compressive strength and dynamic elastic modulus of the samples were obtained. The fractal theory was used to describe the fragmentation characteristics of the samples. The relationship between dynamic mechanical properties, fragmentation characteristics and crack propagation under medium strain rate was discussed. The findings show that when the strain rate is high, more far-field cracks and separation cracks appear in the sample. In the range of medium strain rate, the failure mode and the number of cracks change differently with strain rate compared with the experimental results of low strain rate. The strain rate and the angle of pre-existing crack have a great influence on the crack propagation and failure mode of the samples. The crack propagation of the samples with different pre-existing crack is different. With the increase of strain rate, the failure mode of the sample becomes more complex, gradually evolving from critical failure with a tensile crack to complex failure mainly with X-shaped shear crack. When the angle of the pre-existing crack is fixed, the dynamic compressive strength and dynamic elastic modulus of the samples show obvious strain rate effect, and the pre-existing crack with different angles have significant influence on the strain rate sensitivity of the samples. With the increase of pre-existing crack angle, the variation of dynamic compressive strength, dynamic elastic modulus and fractal dimension of the samples show a certain similarity. In all types of samples, the dynamic compressive strength, dynamic elastic modulus and fractal dimension of the sample containing cracks with the inclination angle at 45° are the smallest. With the increase of strain rate, distribution of fragments becomes more dispersed. The higher the strain rate, the more significant the effect of the pre-existing crack on the fracture degree and fractal dimension of the samples.
-
Key words:
- strain rate /
- crack propagation /
- red sandstone /
- split Hopkinson pressure bar /
- crack inclination angle /
- fracture
-
表 1 各类型裂纹扩展模式的特点
Table 1. Characteristics of each type of crack propagation
裂纹类型 裂纹扩展模式特点 Ⅰ型 从预制裂纹端部垂直方向起裂,随后逐步向加载方向扩展 Ⅱ型 从预制裂纹端部,沿预制裂纹方向起裂,随后逐步沿加载方向扩展 Ⅲ型 从预制裂纹端部沿加载方向起裂,或在裂纹中部起裂(预制裂纹90°布设时),随后沿荷载方向扩展 Ⅳ型 与加载方向呈一定角度起裂,产生剪切裂纹,之后沿加载方向发展为拉伸裂纹。与Ⅱ型裂纹相比该型裂纹在预制裂纹端部附近可能表现出局部的压碎区 Ⅴ型 与加载方向呈一定角度起裂,之后与加载方向呈一定角度继续扩展,一般情况下裂纹扩展路径不平滑,可形成沿裂纹扩展路径的岩屑覆盖剪切带 Ⅵ型 在预制裂隙端部沿预制裂隙方向起裂,并沿预制裂隙方向扩展 Ⅶ型 远场剪切型裂纹普遍从试样受荷面起裂,一般不会早于预制裂隙端部裂纹的形成,并且最终将发展为剪切带 Ⅷ型 远场拉伸型裂纹普遍比预制裂隙端部裂纹形成晚,通常将发展为沿荷载方向贯通试样的拉伸裂纹 表 2 应变率为40 s−1左右和60 s−1左右时试样的裂纹形态
Table 2. Crack shapes of the samples at the strain rates of about 40 s−1 and about 60 s−1
β/(°) 应变率40 s−1左右 应变率60 s−1左右 裂纹形态 裂纹类型 裂纹形态 裂纹类型 0 Ⅱ型
Ⅳ型Ⅱ型
Ⅴ型
Ⅶ型30 Ⅲ型
Ⅴ型Ⅴ型
Ⅶ型45 Ⅲ型
Ⅴ型Ⅱ型
Ⅴ型
Ⅶ型60 Ⅴ型 Ⅴ型
Ⅶ型90 Ⅲ型 Ⅰ型
Ⅴ型
Ⅶ型
Ⅷ型表 3 含不同倾角预制裂隙试样裂纹扩展过程
Table 3. Crack propagation processes in samples containing precracks with different inclination angles
β/(°) 裂纹扩展过程 裂纹最终形态 0
119.7 μs
172.9 μs
232.2 μs
678.3 μs预制裂纹端部Ⅳ型裂纹
剪切段开始萌生,出现
远场Ⅶ型、Ⅷ型裂纹预制裂纹端部Ⅳ型裂纹继续
发展,远场Ⅶ型、Ⅷ型裂纹
继续萌生和发展预制裂纹端部Ⅳ型裂纹剪切段
继续扩展,出现向拉伸裂纹
转变的趋势,远场Ⅶ型裂纹
贯通试件最初产生的预制裂纹端部Ⅳ型裂纹贯通
试样,同时产生Ⅴ型剪切裂纹以及1条Ⅱ型
拉伸裂纹,远场Ⅶ型、Ⅷ型裂纹相互贯通,
靠近入射杆侧出现垂直向离层裂纹30
133.0 μs
186.2 μs
252.7 μs
611.8 μs预制裂纹两端各产生1条Ⅲ型、Ⅴ型裂纹,并开始
萌生远场Ⅷ型裂纹预制裂纹两端的Ⅲ型、Ⅴ型裂纹贯通试样,同时预制裂纹两端
各产生1条Ⅵ型剪切裂纹远场Ⅶ型、Ⅷ型裂纹大量出现、扩展并相互贯通,靠近入射杆
侧出现垂直向离层裂纹远场Ⅷ型裂纹迅速发展并贯通试样 45
133.4 μs
146.3 μs
199.5 μs
438.9 μs预制裂纹端部产生Ⅲ型
拉伸裂纹,出现远场Ⅶ型、
Ⅷ型裂纹预制裂纹端部Ⅲ型拉伸裂纹
贯通试样,另一端产生Ⅱ型
拉伸裂纹并贯通,远场Ⅶ型、
Ⅷ型裂纹继续扩展远场裂纹继续扩展贯通试样,
预制裂纹端部出现1条Ⅲ型
拉伸裂纹新出现的Ⅲ型拉伸裂纹贯通试样,产生新的远场Ⅶ型裂纹,部分远场裂纹相互贯通,出现离层裂纹 60
146.3 μs
172.9 μs
212.8 μs
452.2 μs预制裂纹两端萌生Ⅴ型
剪切裂纹,出现远场Ⅶ型
裂纹预制裂纹两端Ⅴ型剪切裂纹
继续扩展,出现大量远场
Ⅶ型裂纹预制裂纹两端Ⅴ型剪切裂纹
扩展至试样两端,远场Ⅶ型
裂纹继续扩展远场Ⅶ型裂纹扩展至试样两端,
Ⅴ型裂纹、远场Ⅶ型裂纹相互贯通,
靠近入射杆侧出现垂直向离层裂纹90
134.0 μs
172.9 μs
272.6 μs
399.0 μs预制裂纹两端出现Ⅴ型
剪切裂纹,并开始萌生
远场Ⅶ型裂纹Ⅴ型剪切裂纹扩展至试样一端,远场Ⅶ型裂纹迅速扩展、贯通
试样,并出现Ⅷ型裂纹Ⅴ型剪切裂纹扩展至试样另一端,远场Ⅶ型、Ⅷ型裂纹迅速
扩展Ⅴ型剪切裂纹、远场Ⅶ型裂纹相互贯通 表 4 含不同倾角裂隙试样的动态力学参数
Table 4. Dynamic mechanical parameters for samples containing precracks with different inclination angles
试样 应变率/s−1 动态压缩强度/MPa 弹性模量/GPa 试样 应变率/s−1 动态压缩强度/MPa 弹性模量/GPa D-0-1 16.7 35.8 6.3 D-45-7 55.3 45.3 10.9 D-0-2 23.5 40.2 7.2 D-45-8 59.7 50.8 12.0 D-0-3 19.8 37.6 5.9 D-45-9 62.5 52.8 12.0 D-0-4 41.3 48.7 10.3 D-45-10 80.2 60.1 14.6 D-0-5 38.7 45.2 9.7 D-45-11 83.7 65.8 15.2 D-0-6 40.9 44.8 10.7 D-45-12 78.9 63.2 14.1 D-0-7 65.8 64.9 16.8 D-60-1 19.8 42.1 5.7 D-0-8 60.4 61.9 15.2 D-60-2 23.5 41.9 5.2 D-0-9 57.2 57.3 15.9 D-60-3 17.6 39.7 5.0 D-0-10 76.8 79.8 20.8 D-60-4 38.8 48.8 7.5 D-0-11 82.3 81.1 21.0 D-60-5 43.5 50.2 8.0 D-0-12 83.2 83.5 20.4 D-60-6 41.3 53.8 7.8 D-30-1 17.8 31.8 6.4 D-60-7 59.7 55.7 13.3 D-30-2 19.2 33.2 5.7 D-60-8 63.2 59.8 13.3 D-30-3 21.9 34.3 5.8 D-60-9 58.6 55.7 13.7 D-30-4 37.8 39.8 8.8 D-60-10 75.3 62.7 18.8 D-30-5 42.3 43.5 9.3 D-60-11 79.4 66.8 17.0 D-30-6 39.8 41.7 9.0 D-60-12 83.2 67.8 18.6 D-30-7 55.6 55.2 14.6 D-90-1 17.9 41.8 5.7 D-30-8 59.7 58.8 15.2 D-90-2 19.6 37.6 5.9 D-30-9 62.1 54.3 13.9 D-90-3 21.8 45.7 6.3 D-30-10 76.5 76.2 16.5 D-90-4 39.7 50.1 8.9 D-30-11 79.8 79.3 17.3 D-90-5 45.8 53.2 9.5 D-30-12 83.2 78.5 16.9 D-90-6 42.1 47.8 8.7 D-45-1 18.7 32.9 4.4 D-90-7 62.1 52.1 14.3 D-45-2 23.5 35.3 4.2 D-90-8 60.7 54.9 15.0 D-45-3 20.1 31.8 3.7 D-90-9 65.2 59.8 15.2 D-45-4 40.8 39.7 7.0 D-90-10 77.9 69.4 19.4 D-45-5 39.7 41.2 7.6 D-90-11 83.9 72.8 20.2 D-45-6 43.2 42.8 7.0 D-90-12 79.8 70.1 19.8 表 5 指数函数系数值
Table 5. The coefficient values of the exponential function
β/(°) 0 30 45 60 90 a/MPa 28.01 23.87 26.49 36.14 34.3 b/s 0.01308 0.01467 0.01070 0.00761 0.00867 表 6 不同应变率下含裂隙试样筛分情况
Table 6. The sieving of samples containing cracks at different strain rates
β/(°) 应变率/s−1 ~40 ~60 ~80 0 30 45 60 90 表 7 含裂隙试样破碎块度
Table 7. The granularity of samples containing cracks after impact
试样 da/mm 试样 da/mm 试样 da/mm 试样 da/mm 试样 da/mm D-0-4 29.96 D-30-4 29.56 D-45-4 29.33 D-60-4 28.06 D-90-4 29.33 D-0-5 29.52 D-30-5 29.82 D-45-5 29.53 D-60-5 27.63 D-90-5 29.14 D-0-6 29.21 D-30-6 29.69 D-45-6 29.14 D-60-6 28.03 D-90-6 29.51 D-0-7 18.42 D-30-7 19.56 D-45-7 21.83 D-60-7 15.94 D-90-7 15.94 D-0-8 17.68 D-30-8 19.26 D-45-8 21.12 D-60-8 17.51 D-90-8 15.44 D-0-9 17.94 D-30-9 19.31 D-45-9 21.90 D-60-9 17.59 D-90-9 15.59 D-0-10 12.29 D-30-10 13.34 D-45-10 12.73 D-60-10 8.79 D-90-10 11.42 D-0-11 11.96 D-30-11 12.64 D-45-11 13.01 D-60-11 8.77 D-90-11 10.35 D-0-12 10.77 D-30-12 13.00 D-45-12 13.44 D-60-12 8.98 D-90-12 11.32 表 8 不同工况下试样的分形维数
Table 8. Fractal dimensions of samples under different cases
试样 Db 试样 Db 试样 Db 试样 Db 试样 Db D-0-4 1.28 D-30-4 1.29 D-45-4 1.25 D-60-4 1.31 D-90-4 1.25 D-0-5 1.40 D-30-5 1.33 D-45-5 1.29 D-60-5 1.22 D-90-5 1.33 D-0-6 1.28 D-30-6 1.25 D-45-6 1.26 D-60-6 1.40 D-90-6 1.33 D-0-7 2.07 D-30-7 1.78 D-45-7 1.63 D-60-7 2.05 D-90-7 2.05 D-0-8 1.89 D-30-8 1.85 D-45-8 1.57 D-60-8 2.06 D-90-8 2.04 D-0-9 1.89 D-30-9 1.87 D-45-9 1.62 D-60-9 2.16 D-90-9 2.01 D-0-10 2.54 D-30-10 2.20 D-45-10 2.14 D-60-10 2.42 D-90-10 2.22 D-0-11 2.50 D-30-11 2.14 D-45-11 2.17 D-60-11 2.46 D-90-11 2.14 D-0-12 2.56 D-30-12 2.22 D-45-12 2.15 D-60-12 2.35 D-90-12 2.25 表 9 拟合直线系数值
Table 9. The coefficient values of the fitting straight lines
β/(°) 0 30 45 60 90 p1/s 0.02946 0.02212 0.02200 0.02793 0.02857 p2 0.1454 0.4509 0.3461 0.2513 0.1679 -
[1] 赵程, 幸金权, 牛佳伦, 等. 水-力共同作用下预制裂隙类岩石试样裂纹扩展试验研究 [J]. 岩石力学与工程学报, 2019, 38(S1): 2823–2830. DOI: 10.13722/j.cnki.jrme.2018.1437.ZHAO C, XING J Q, NIU J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2823–2830. DOI: 10.13722/j.cnki.jrme.2018.1437. [2] 李占金, 郝家旺, 甘德清, 等. 动载作用下磁铁矿石破坏特性实验研究 [J]. 振动与冲击, 2019, 38(12): 231–238, 245. DOI: 10.13465/j.cnki.jvs.2019.12.033.LI Z J, HAO J W, GAN D Q, et al. An experimental study on the failure characteristics of magnetite ore based on dynamic load [J]. Journal of Vibration and Shock, 2019, 38(12): 231–238, 245. DOI: 10.13465/j.cnki.jvs.2019.12.033. [3] 杨圣奇, 戴永浩, 韩立军, 等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究 [J]. 岩石力学与工程学报, 2009, 28(12): 2391–2404. DOI: 10.3321/j.issn:1000-6915.2009.12.003.YANG S Q, DAI Y H, HAN L J, et al. Uniaxial compression experimental research on deformation and failure properties of brittle marble specimen with pre-existing fissures [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2391–2404. DOI: 10.3321/j.issn:1000-6915.2009.12.003. [4] 张亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制 [J]. 中国公路学报, 2021, 34(1): 24–34. DOI: 10.3969/j.issn.1001-7372.2021.01.003.ZHANG L, WANG G L, LEI R D. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression [J]. China Journal of Highway and Transport, 2021, 34(1): 24–34. DOI: 10.3969/j.issn.1001-7372.2021.01.003. [5] HUANG J F, CHEN G L, ZHAO Y H, et al. An experimental study of the strain field development prior to failure of a marble plate under compression [J]. Tectonophysics, 1990, 175(1/2/3): 269–284. DOI: 10.1016/0040-1951(90)90142-U. [6] REISA J, DA SILVA NUNES L C, DA C MATTOS H S. Crack propagation analysis of polymer mortars brazilian disc specimens containing cracks under compressive line loading [J]. Advanced Materials Research, 2015, 1129: 429–437. DOI: 10.4028/www.scientific.net/AMR.1129.429. [7] ZHOU X P, CHENG H, FENG Y F. An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1961–1986. DOI: 10.1007/s00603-013-0511-7. [8] 易婷, 唐建新, 王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响 [J]. 地下空间与工程学报, 2021, 17(1): 98–106, 134.YI T, TANG J X, WANG Y L. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 98–106, 134. [9] 刘华博, 赵毅鑫, 姜耀东, 等. 含预制单裂隙石膏裂纹孕育与能量演化的应变率效应研究 [J]. 实验力学, 2019, 34(3): 451–459. DOI: 10.7520/1001-4888-17-252.LIU H B, ZHAO Y X, JIANG Y D, et al. Strain rate effect on crack propagation and energy evolution of gypsum containing pre-existing single fracture [J]. Journal of Experimental Mechanics, 2019, 34(3): 451–459. DOI: 10.7520/1001-4888-17-252. [10] 张天军, 景晨, 王喜娜, 等. 不同加载速率对含孔试样变形特性影响研究 [J]. 采矿与安全工程学报, 2021, 38(4): 847–856. DOI: 10.13545/j.cnki.jmse.2020.0254.ZHANG T J, JING C, WANG X N, et al. Experimental investigation of the effect of different loading rates on deformation characteristics of porous samples [J]. Journal of Mining and Safety Engineering, 2021, 38(4): 847–856. DOI: 10.13545/j.cnki.jmse.2020.0254. [11] 于利强, 姚强岭, 徐强, 等. 加载速率影响下裂隙细砂岩裂纹扩展试验及数值模拟研究 [J]. 煤炭学报, 2021, 46(11): 3488–3501. DOI: 10.13225/j.cnki.jccs.2020.1529.YU L Q, YAO Q L, XU Q, et al. Experimental and numerical simulation study on crack propagation of fractured fine sandstone under the influence of loading rate [J]. Journal of China Coal Society, 2021, 46(11): 3488–3501. DOI: 10.13225/j.cnki.jccs.2020.1529. [12] 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探 [J]. 岩石力学与工程学报, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.XIE H P, PENG R D, JU Y, et al. On energy analysis of rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001. [13] 朱万成, 唐春安, 黄志平, 等. 静态和动态载荷作用下岩石劈裂破坏模式的数值模拟 [J]. 岩石力学与工程学报, 2005, 24(1): 1–7. DOI: 10.3321/j.issn:1000-6915.2005.01.001.ZHU W C, TANG C A, HUANG Z P, et al. Numerical simulation on splitting failure mode of rock under static and dynamic loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 1–7. DOI: 10.3321/j.issn:1000-6915.2005.01.001. [14] XIE B J, AI D H, YANG Y. Crack detection and evolution law for rock mass under SHPB impact tests [J]. Shock and Vibration, 2019, 2019: 3956749. DOI: 10.1155/2019/3956749. [15] AI D H, ZHAO Y C, WANG Q F, et al. Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test [J]. International Journal of Impact Engineering, 2019, 126: 135–146. DOI: 10.1016/j.ijimpeng.2019.01.001. [16] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005. [17] LI X B, ZHOU T, LI D Y. Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 29–44. DOI: 10.1007/s00603-016-1093-y. [18] ZOU C J, WONG L N Y, LOO J J, et al. Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings [J]. Engineering Geology, 2016, 201: 71–84. DOI: 10.1016/j.enggeo.2015.12.014. [19] LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5. [20] YAN Z L, DAI F, LIU Y, et al. Numerical assessment of the rate-dependent cracking behaviours of single-flawed rocks in split Hopkinson pressure bar tests [J]. Engineering Fracture Mechanics, 2021, 247: 107656. DOI: 10.1016/j.engfracmech.2021.107656. [21] 王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石料板动态压缩破坏试验研究 [J]. 岩石力学与工程学报, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.WANG Q Z, WU B B, LIU F, et al. Dynamic failure of manufactured similar rock plate containing a single fissure [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746. [22] 李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究 [J]. 岩石力学与工程学报, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.LI D Y, HU C W, ZHU Q Q. Experimental study on mechanical properties and failure laws of granite with an artificial flaw under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089. [23] 洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究 [J]. 岩石力学与工程学报, 2008, 27(3): 526–533. DOI: 10.3321/j.issn:1000-6915.2008.03.012.HONG L, LI X B, MA C D, et al. Study on size effect of rock dynamic strength and strain rate sensitivity [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526–533. DOI: 10.3321/j.issn:1000-6915.2008.03.012. [24] 张旭龙, 张盛, 安定超, 等. 平行双裂缝圆盘试样裂纹扩展过程的尺寸效应试验研究 [J]. 岩石力学与工程学报, 2023, 42(1): 115–128. DOI: 10.13722/j.cnki.jrme.2021.1113.ZHANG X L, ZHANG S, AN D C, et al. Experimental study on the size effect of crack propagation process of disk samples containing parallel double pre-existing flaws [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 115–128. DOI: 10.13722/j.cnki.jrme.2021.1113. [25] DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8. [26] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014.LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014. [27] 鲁祖德. 裂隙岩石水-岩作用力学特性试验研究与理论分析 [D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010.LU Z D. Experimental and theoretical analysis on mechanical properties of fractured rock under water-rock interaction [D]. Wuhan, Hubei, China: Graduate School of Chinese Academy of Sciences (Wuhan Institute of Geomechanics), 2010. [28] 李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析 [J]. 岩石力学与工程学报, 2006, 25(3): 462–466. DOI: 10.3321/j.issn:1000-6915.2006.03.004.LI Y P, YANG C H. Influence of geometric characteristics of pre-existing cracks on mixed mode fractures under compression-shear loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 462–466. DOI: 10.3321/j.issn:1000-6915.2006.03.004. [29] 李夕兵, 李海波, 王明洋, 等. 岩石动力特性实验规程: T/CSRME 001—2019 [S]. 北京: 中国岩石力学与工程学会, 2019.LI X B, LI H B, WANG M Y, et al. Technical specification for testing method of rock dynamic properties: T/CSRME 001—2019 [S]. Beijing, China: Chinese Society for Rock Mechanics and Engineering, 2019. [30] 王春, 熊宏威, 舒荣华, 等. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征 [J]. 中国有色金属学报, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.WANG C, XIONG H W, SHU R H, et al. Dynamic mechanical characteristic and damage-fracture behavior of deep copper-bearing skarn after high temperature treatment [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737. [31] 李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.LI D Y, WAN Q R, ZHU Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods [J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187. [32] LI J C, LI N N, LI H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint [J]. International Journal of Impact Engineering, 2017, 105: 109–116. DOI: 10.1016/j.ijimpeng.2016.12.011. [33] 张继春. 岩体爆破的块度理论及其应用 [M]. 成都: 西南交通大学出版社, 2001.ZHANG J C. Fragment-size theory of blasting in rock mass and its application [M]. Chengdu, Sichuan, China: Southwest Jiaotong University Press, 2001. [34] 谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究 [J]. 防灾减灾工程学报, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.XIE H P, GAO F, ZHOU H W, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001. [35] SHARAFISAFA M, ALIABADIAN Z, SHEN L M. Crack initiation and failure development in bimrocks using digital image correlation under dynamic load [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102688. DOI: 10.1016/j.tafmec.2020.102688. [36] 张人凡, 朱哲明, 王飞, 等. 冲击载荷作用下黑砂岩动态断裂参数的分形修正 [J]. 爆炸与冲击, 2022, 42(7): 073101. DOI: 10.11883/bzycj-2022-0051.ZHANG R F, ZHU Z M, WANG F, et al. Fractal correction of dynamic fracture parameters of black sandstone under impact loads [J]. Explosion and Shock Waves, 2022, 42(7): 073101. DOI: 10.11883/bzycj-2022-0051. [37] 武仁杰, 李海波, 李晓锋, 等. 冲击载荷作用下层状岩石破碎能耗及块度特征 [J]. 煤炭学报, 2020, 45(3): 1053–1060. DOI: 10.13225/j.cnki.jccs.2019.0266.WU R J, LI H B, LI X F, et al. Broken energy dissipation and fragmentation characteristics of layered rock under impact loading [J]. Journal of China Coal Society, 2020, 45(3): 1053–1060. DOI: 10.13225/j.cnki.jccs.2019.0266.