Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity
-
摘要: 为研究IN718镍基高温合金在高速冲击作用下的抗侵彻能力,采用直径为5 mm的304不锈钢球形弹丸,利用二级轻气炮试验装置对IN718靶板进行了一系列弹道冲击试验。通过高速摄像机进行拍摄,弹丸的入射速度范围为548.2~1 067.0 m/s。对弹丸的剩余速度进行了测量和分析,并对弹道极限速度进行了验证,观察了靶板的变形和破坏模式以及弹孔直径。结果表明:在试验冲击范围之内,随着冲击速度的升高,靶板的变形模式由撕裂破坏到剪切破坏转变,靶板的穿甲破坏模式与冲击速度密切相关;靶板能量吸收效率随弹丸初始动能的增加而降低,且趋于常值0.7;靶板变形挠度随着冲击速度的升高呈减小趋势,且最大变形挠度出现在弹道极限附近;靶板正面和背面所形成的弹孔直径均随着冲击速度的升高而增大,且背面所形成的弹孔直径大于前面所形成的弹孔直径。
-
关键词:
- IN718镍基高温合金 /
- 弹道冲击 /
- 弹道极限速度 /
- 变形与破坏模式 /
- 侵彻
Abstract: A series of high-speed ballistic impact tests were conducted on a two-stage light gas gun to investigate the perforation behaviors of Inconel 718 (IN718) superalloy plates. The IN718 targets were prepared with 2 mm thickness, and the 5 mm diameter SS304 spheres were used as projectiles. The impact velocity ranged from 548.2 m/s to 1 067.0 m/s. The shadow graphs of the impact process were captured by using a high-speed camera at a frame rate of 160 000 frames per second. The projectile residual velocities after perforation were then obtained from snapshots and analyzed. The Rechi-Ipson model was employed for the investigated projectile-target combination by fitting the projectile initial velocity-residual velocity relationship, and the ballistic limit velocity 561.0 m/s was then verified. The maximum deformation deflection of the ballistic impact-recovered plates was measured using a height gauge. The optical morphology of the postmortem target was captured, the deformation and failure modes of the target material were observed, while the bullet hole diameters were measured. The experimental results reveal that within the investigated impact velocity range, as the impact velocity increases, the failure mode of the target material changes from tension-dominated failure to tension/shear-dominated failure. The perforation failure mode of the plates is closely associated with the impact velocity. The energy absorption efficiency of the target plates decreases with the increase of projectile’s initial kinetic energy, and it approaches a constant of 0.7. The deformation of the plates decreases with the increase of impact velocity, with the maximum deformation deflection occurring near the ballistic limit. The bullet hole diameters on the front and rear side both increase with the increase of impact velocity, and the bullet hole diameter on the rear side is greater than that on the front side. It is evident that investigating the deformation, failure modes, and ballistic properties of IN718 superalloy under high-speed ballistic impact is essential for its industrial applications. -
表 1 IN718合金靶板的弹道冲击试验结果
Table 1. Test results of the IN718 alloy plates impacted by spherical projectiles
试验 vi/(m·s−1) vr/(m·s−1) vd/(m·s−1) Ei/J Er/J Ed/J 1 548.2 0 548.2 76.63 0 76.63 2 573.8 185.0 388.8 83.96 8.73 75.23 3 620.9 251.0 369.9 98.31 16.07 82.24 4 748.0 347.0 401.0 142.67 30.70 111.97 5 787.0 396.0 391.0 157.94 39.99 117.95 6 935.0 513.5 421.5 222.93 67.24 155.69 7 1 067.0 589.0 477.9 290.26 88.46 201.80 表 2 弹道极限速度及R-I模型参数
Table 2. Ballistic limit velocity and the R-I model parameters
弹体材料 vbl/(m·s−1) a p 304不锈钢 561.0 0.63 2.58 -
[1] 《中国航空材料手册》编辑委员会. 中国航空材料手册2: 变形高温合金、铸造高温合金 [M]. 北京: 中国标准出版社, 1989. [2] CHEN Y D, HUA J Y, FAN D, et al. High-speed projectile perforation of nickel-based Inconel 718 superalloy plates: experiments and modeling [J]. Thin-Walled Structures, 2023, 192: 111181. DOI: 10.1016/j.tws.2023.111181. [3] 庄景云, 杜金辉, 邓群. 变形高温合金GH4169组织与性能 [M]. 北京: 冶金工业出版社, 2011: 1–3. [4] HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010. [5] BIAN Y L, LIU Q, FENG Z D, et al. High-speed penetration dynamics of polycarbonate [J]. International Journal of Mechanical Sciences, 2022, 223: 107250. DOI: 10.1016/j.ijmecsci.2022.107250. [6] HUA J Y, LIU Q, YANG H, et al. High-speed penetration of cast Mg-6Gd-3Y-0.5Zr alloy: experiments and modeling [J]. International Journal of Mechanical Sciences, 2023, 241: 107942. DOI: 10.1016/j.ijmecsci.2022.107942. [7] LIU Q, HUA J Y, XU Y F, et al. Ballistic penetration of high-entropy CrMnFeCoNi alloy: experiments and modelling [J]. International Journal of Mechanical Sciences, 2023, 249: 108252. DOI: 10.1016/j.ijmecsci.2023.108252. [8] SCIUVA M D, FROLA C, SALVANO S. Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation [J]. International Journal of Impact Engineering, 2003, 28(8): 849–876. DOI: 10.1016/S0734-743X(02)00156-2. [9] SANG L J, LU J X, WANG J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. Journal of Materials Science, 2021, 56(28): 16097–16112. DOI: 10.1007/s10853-021-06256-8. [10] ZHANG D Y, FENG Z, WANG C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Materials Science and Engineering: A, 2018, 724: 357–367. DOI: 10.1016/j.msea.2018.03.073. [11] 邹品. GH4169高温动态本构模型与高速冲击性能研究 [D]. 南京: 南京航空航天大学, 2018.ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. [12] 宋宗贤. 基于SLM成形的Inconel718镍基高温合金超高周疲劳断裂机理研究 [D]. 太原: 太原科技大学, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.SONG Z X. Study on ultrahigh cycle fatigue fracture mechanism of Inconel718 nickel-based superalloy formed by SLM [D]. Taiyuan: Taiyuan University of Science and Technology, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100. [13] 王建国, 王红缨, 王连庆, 等. GH4169合金高温多轴低周疲劳寿命预测 [J]. 机械强度, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.WANG J G, WANG H Y, WANG L Q, et al. Fatigue life prediction for GH4169 superalloy under multi-axial cyclic loading at 650 °C [J]. Journal of Mechanical Strength, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005. [14] LEE W S, LIN C F, CHEN T H, et al. Dynamic impact response of Inconel 718 alloy under low and high temperatures [J]. Materials Transactions, 2011, 52(9): 1734–1740. DOI: 10.2320/matertrans.M2011130. [15] SHOCKEY D A, SIMONS J W, BROWN C S, et al. Shear failure of Inconel 718 under dynamic loads [J]. Experimental Mechanics, 2007, 47(6): 723–732. DOI: 10.1007/s11340-007-9068-2. [16] KOBAYASHI T, SIMONS J W, BROWN C S, et al. Plastic flow behavior of Inconel 718 under dynamic shear loads [J]. International Journal of Impact Engineering, 2008, 35(5): 389–396. DOI: 10.1016/j.ijimpeng.2007.03.005. [17] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. DOI: 10.1016/S0734-743X(01)00018-5. [18] ERICE B, PÉREZ-MARTÍN M J, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. DOI: 10.1016/j.ijimpeng.2014.02.007. [19] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012. [20] 刘焦, 郑百林, 杨彪, 等. 镍基合金薄板不同温度下的弹道冲击行为 [J]. 航空材料学报, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.LIU J, ZHENG B L, YANG B, et al. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures [J]. Journal of Aeronautical Materials, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045. [21] RODRÍGUEZ-MILLÁN M, DÍAZ-ÁLVAREZ A, BERNIER R, et al. Experimental and numerical analysis of conical projectile impact on Inconel 718 plates [J]. Metals, 2019, 9(6): 638. DOI: 10.3390/met9060638. [22] 吴轲. GH4169高温合金加筋结构机匣抗冲击能力研究 [D]. 南京: 南京航空航天大学, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.WU K. Research on impact resistance of GH4169 casing in the form of stiffened structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311. [23] 谭学明, 郭伟国, 林栋, 等. GCr15弹丸冲击不同厚度GH4169板的变形与破坏模式试验研究 [J]. 振动与冲击, 2022, 41(7): 199–206.TAN X M, GUO W G, LIN D, et al. Tests for deformation and failure modes of GH4169 plates with different thickness under GCr15 projectile impact [J]. Journal of Vibration and Shock, 2022, 41(7): 199–206. [24] KAWAI N, TSURUI K, HASEGAWA S, et al. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris [J]. Review of Scientific Instruments, 2010, 81(11): 115105. DOI: 10.1063/1.3498896. [25] SHARMA P, CHANDEL P, BHARDWAJ V, et al. Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles [J]. Thin-Walled Structures, 2018, 126: 205–219. DOI: 10.1016/j.tws.2017.05.014. [26] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566. [27] 邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06. [28] DENG Y F, WU H P, ZHANG Y, et al. Experimental and numerical study on the ballistic resistance of 6061-T651 aluminum alloy thin plates struck by different nose shapes of projectiles [J]. International Journal of Impact Engineering, 2022, 160: 104083. DOI: 10.1016/j.ijimpeng.2021.104083. [29] RODRÍGUEZ-MILLÁN M, VAZ-ROMERO A, RUSINEK A, et al. Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles [J]. Experimental Mechanics, 2014, 54(5): 729–742. DOI: 10.1007/s11340-013-9829-z. [30] RODRIGUEZ-MILLÁN M, GARCIA-GONZALEZ D, RUSINEK A, et al. Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles [J]. Thin-Walled Structures, 2018, 123: 1–10. DOI: 10.1016/j.tws.2017.11.004.