球形弹丸高速冲击IN718合金板的变形与破坏模式

陈艳丹 陈兴 卢永刚 刘彤

陈艳丹, 陈兴, 卢永刚, 刘彤. 球形弹丸高速冲击IN718合金板的变形与破坏模式[J]. 爆炸与冲击, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071
引用本文: 陈艳丹, 陈兴, 卢永刚, 刘彤. 球形弹丸高速冲击IN718合金板的变形与破坏模式[J]. 爆炸与冲击, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071
CHEN Yandan, CHEN Xing, LU Yonggang, LIU Tong. Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity[J]. Explosion And Shock Waves, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071
Citation: CHEN Yandan, CHEN Xing, LU Yonggang, LIU Tong. Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity[J]. Explosion And Shock Waves, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071

球形弹丸高速冲击IN718合金板的变形与破坏模式

doi: 10.11883/bzycj-2023-0071
基金项目: 国家自然科学基金(11672278)
详细信息
    作者简介:

    陈艳丹(1992- ),女,博士研究生,chenyandan21@gscaep.ac.cn

    通讯作者:

    刘 彤(1964- ),男,博士,研究员,liut@yinhe596.cn

  • 中图分类号: O347.3

Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity

  • 摘要: 为研究IN718镍基高温合金在高速冲击作用下的抗侵彻能力,采用直径为5 mm的304不锈钢球形弹丸,利用二级轻气炮试验装置对IN718靶板进行了一系列弹道冲击试验。通过高速摄像机进行拍摄,弹丸的入射速度范围为548.2~1 067.0 m/s。对弹丸的剩余速度进行了测量和分析,并对弹道极限速度进行了验证,观察了靶板的变形和破坏模式以及弹孔直径。结果表明:在试验冲击范围之内,随着冲击速度的升高,靶板的变形模式由撕裂破坏到剪切破坏转变,靶板的穿甲破坏模式与冲击速度密切相关;靶板能量吸收效率随弹丸初始动能的增加而降低,且趋于常值0.7;靶板变形挠度随着冲击速度的升高呈减小趋势,且最大变形挠度出现在弹道极限附近;靶板正面和背面所形成的弹孔直径均随着冲击速度的升高而增大,且背面所形成的弹孔直径大于前面所形成的弹孔直径。
  • 图  1  球形弹丸和IN718合金靶板

    Figure  1.  Spherical projectile and IN718 alloy plate

    图  2  二级轻气炮试验示意图

    Figure  2.  Schematic diagram setup for perforation experiment with two-stage light gas gun

    图  3  不同冲击速度下球形弹丸对IN718合金的弹道冲击快照(伪彩色)

    Figure  3.  Snapshots (in pseudo color) of ballistic impact by a spherical projectile on an IN718 nickel-base superalloy target at different impact velocities

    图  4  弹体贯穿靶体的初始-剩余速度

    Figure  4.  Initial versus residual velocities for the targets impacted by spherical projectiles

    图  5  靶板能量吸收效率与弹丸初始动能的关系

    Figure  5.  Relationship between the energy absorption efficiency of the plate and the initial kinetic energy of the projectile

    图  6  试验中靶板最大变形挠度随冲击速度的变化曲线

    Figure  6.  The maximum deflection of the targets impacted at different impact velocities in the test

    图  7  不同冲击速度下靶板的变形与破坏模式

    Figure  7.  Deformation and failure modes of the targets impacted at different impact velocities

    图  8  靶板弹孔直径随初始速度的变化曲线

    Figure  8.  Bullet hole diameter in the targetsimpacted at different impact velocities

    表  1  IN718合金靶板的弹道冲击试验结果

    Table  1.   Test results of the IN718 alloy plates impacted by spherical projectiles

    试验 vi/(m·s−1) vr/(m·s−1) vd/(m·s−1) Ei/J Er/J Ed/J
    1 548.2 0 548.2 76.63 0 76.63
    2 573.8 185.0 388.8 83.96 8.73 75.23
    3 620.9 251.0 369.9 98.31 16.07 82.24
    4 748.0 347.0 401.0 142.67 30.70 111.97
    5 787.0 396.0 391.0 157.94 39.99 117.95
    6 935.0 513.5 421.5 222.93 67.24 155.69
    7 1 067.0 589.0 477.9 290.26 88.46 201.80
    下载: 导出CSV

    表  2  弹道极限速度及R-I模型参数

    Table  2.   Ballistic limit velocity and the R-I model parameters

    弹体材料 vbl/(m·s−1) a p
    304不锈钢 561.0 0.63 2.58
    下载: 导出CSV
  • [1] 《中国航空材料手册》编辑委员会. 中国航空材料手册2: 变形高温合金、铸造高温合金 [M]. 北京: 中国标准出版社, 1989.
    [2] CHEN Y D, HUA J Y, FAN D, et al. High-speed projectile perforation of nickel-based Inconel 718 superalloy plates: experiments and modeling [J]. Thin-Walled Structures, 2023, 192: 111181. DOI: 10.1016/j.tws.2023.111181.
    [3] 庄景云, 杜金辉, 邓群. 变形高温合金GH4169组织与性能 [M]. 北京: 冶金工业出版社, 2011: 1–3.
    [4] HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010.
    [5] BIAN Y L, LIU Q, FENG Z D, et al. High-speed penetration dynamics of polycarbonate [J]. International Journal of Mechanical Sciences, 2022, 223: 107250. DOI: 10.1016/j.ijmecsci.2022.107250.
    [6] HUA J Y, LIU Q, YANG H, et al. High-speed penetration of cast Mg-6Gd-3Y-0.5Zr alloy: experiments and modeling [J]. International Journal of Mechanical Sciences, 2023, 241: 107942. DOI: 10.1016/j.ijmecsci.2022.107942.
    [7] LIU Q, HUA J Y, XU Y F, et al. Ballistic penetration of high-entropy CrMnFeCoNi alloy: experiments and modelling [J]. International Journal of Mechanical Sciences, 2023, 249: 108252. DOI: 10.1016/j.ijmecsci.2023.108252.
    [8] SCIUVA M D, FROLA C, SALVANO S. Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation [J]. International Journal of Impact Engineering, 2003, 28(8): 849–876. DOI: 10.1016/S0734-743X(02)00156-2.
    [9] SANG L J, LU J X, WANG J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. Journal of Materials Science, 2021, 56(28): 16097–16112. DOI: 10.1007/s10853-021-06256-8.
    [10] ZHANG D Y, FENG Z, WANG C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Materials Science and Engineering: A, 2018, 724: 357–367. DOI: 10.1016/j.msea.2018.03.073.
    [11] 邹品. GH4169高温动态本构模型与高速冲击性能研究 [D]. 南京: 南京航空航天大学, 2018.

    ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [12] 宋宗贤. 基于SLM成形的Inconel718镍基高温合金超高周疲劳断裂机理研究 [D]. 太原: 太原科技大学, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.

    SONG Z X. Study on ultrahigh cycle fatigue fracture mechanism of Inconel718 nickel-based superalloy formed by SLM [D]. Taiyuan: Taiyuan University of Science and Technology, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.
    [13] 王建国, 王红缨, 王连庆, 等. GH4169合金高温多轴低周疲劳寿命预测 [J]. 机械强度, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.

    WANG J G, WANG H Y, WANG L Q, et al. Fatigue life prediction for GH4169 superalloy under multi-axial cyclic loading at 650 °C [J]. Journal of Mechanical Strength, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.
    [14] LEE W S, LIN C F, CHEN T H, et al. Dynamic impact response of Inconel 718 alloy under low and high temperatures [J]. Materials Transactions, 2011, 52(9): 1734–1740. DOI: 10.2320/matertrans.M2011130.
    [15] SHOCKEY D A, SIMONS J W, BROWN C S, et al. Shear failure of Inconel 718 under dynamic loads [J]. Experimental Mechanics, 2007, 47(6): 723–732. DOI: 10.1007/s11340-007-9068-2.
    [16] KOBAYASHI T, SIMONS J W, BROWN C S, et al. Plastic flow behavior of Inconel 718 under dynamic shear loads [J]. International Journal of Impact Engineering, 2008, 35(5): 389–396. DOI: 10.1016/j.ijimpeng.2007.03.005.
    [17] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. DOI: 10.1016/S0734-743X(01)00018-5.
    [18] ERICE B, PÉREZ-MARTÍN M J, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. DOI: 10.1016/j.ijimpeng.2014.02.007.
    [19] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
    [20] 刘焦, 郑百林, 杨彪, 等. 镍基合金薄板不同温度下的弹道冲击行为 [J]. 航空材料学报, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.

    LIU J, ZHENG B L, YANG B, et al. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures [J]. Journal of Aeronautical Materials, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.
    [21] RODRÍGUEZ-MILLÁN M, DÍAZ-ÁLVAREZ A, BERNIER R, et al. Experimental and numerical analysis of conical projectile impact on Inconel 718 plates [J]. Metals, 2019, 9(6): 638. DOI: 10.3390/met9060638.
    [22] 吴轲. GH4169高温合金加筋结构机匣抗冲击能力研究 [D]. 南京: 南京航空航天大学, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.

    WU K. Research on impact resistance of GH4169 casing in the form of stiffened structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.
    [23] 谭学明, 郭伟国, 林栋, 等. GCr15弹丸冲击不同厚度GH4169板的变形与破坏模式试验研究 [J]. 振动与冲击, 2022, 41(7): 199–206.

    TAN X M, GUO W G, LIN D, et al. Tests for deformation and failure modes of GH4169 plates with different thickness under GCr15 projectile impact [J]. Journal of Vibration and Shock, 2022, 41(7): 199–206.
    [24] KAWAI N, TSURUI K, HASEGAWA S, et al. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris [J]. Review of Scientific Instruments, 2010, 81(11): 115105. DOI: 10.1063/1.3498896.
    [25] SHARMA P, CHANDEL P, BHARDWAJ V, et al. Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles [J]. Thin-Walled Structures, 2018, 126: 205–219. DOI: 10.1016/j.tws.2017.05.014.
    [26] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566.
    [27] 邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.

    DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.
    [28] DENG Y F, WU H P, ZHANG Y, et al. Experimental and numerical study on the ballistic resistance of 6061-T651 aluminum alloy thin plates struck by different nose shapes of projectiles [J]. International Journal of Impact Engineering, 2022, 160: 104083. DOI: 10.1016/j.ijimpeng.2021.104083.
    [29] RODRÍGUEZ-MILLÁN M, VAZ-ROMERO A, RUSINEK A, et al. Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles [J]. Experimental Mechanics, 2014, 54(5): 729–742. DOI: 10.1007/s11340-013-9829-z.
    [30] RODRIGUEZ-MILLÁN M, GARCIA-GONZALEZ D, RUSINEK A, et al. Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles [J]. Thin-Walled Structures, 2018, 123: 1–10. DOI: 10.1016/j.tws.2017.11.004.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  81
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-11-30
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回