• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

球形弹丸高速冲击IN718合金板的变形与破坏模式

陈艳丹 陈兴 卢永刚 刘彤

王鹏飞, 徐松林, 李志斌, 胡时胜. 高温下轻质泡沫铝动态力学性能实验[J]. 爆炸与冲击, 2014, 34(4): 433-438. doi: 10.11883/1001-1455(2014)04-0433-06
引用本文: 陈艳丹, 陈兴, 卢永刚, 刘彤. 球形弹丸高速冲击IN718合金板的变形与破坏模式[J]. 爆炸与冲击, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071
Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. An experimental study on dynamic mechanical property ofultra-light aluminum foam under high temperatures[J]. Explosion And Shock Waves, 2014, 34(4): 433-438. doi: 10.11883/1001-1455(2014)04-0433-06
Citation: CHEN Yandan, CHEN Xing, LU Yonggang, LIU Tong. Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity[J]. Explosion And Shock Waves, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071

球形弹丸高速冲击IN718合金板的变形与破坏模式

doi: 10.11883/bzycj-2023-0071
基金项目: 国家自然科学基金(11672278)
详细信息
    作者简介:

    陈艳丹(1992- ),女,博士研究生,chenyandan21@gscaep.ac.cn

    通讯作者:

    刘 彤(1964- ),男,博士,研究员,liut@yinhe596.cn

  • 中图分类号: O347.3

Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity

  • 摘要: 为研究IN718镍基高温合金在高速冲击作用下的抗侵彻能力,采用直径为5 mm的304不锈钢球形弹丸,利用二级轻气炮试验装置对IN718靶板进行了一系列弹道冲击试验。通过高速摄像机进行拍摄,弹丸的入射速度范围为548.2~1 067.0 m/s。对弹丸的剩余速度进行了测量和分析,并对弹道极限速度进行了验证,观察了靶板的变形和破坏模式以及弹孔直径。结果表明:在试验冲击范围之内,随着冲击速度的升高,靶板的变形模式由撕裂破坏到剪切破坏转变,靶板的穿甲破坏模式与冲击速度密切相关;靶板能量吸收效率随弹丸初始动能的增加而降低,且趋于常值0.7;靶板变形挠度随着冲击速度的升高呈减小趋势,且最大变形挠度出现在弹道极限附近;靶板正面和背面所形成的弹孔直径均随着冲击速度的升高而增大,且背面所形成的弹孔直径大于前面所形成的弹孔直径。
  • 轻质泡沫铝是一种具有高孔隙度的材料, 具有良好的吸声、吸能、隔热等特性, 在航空航天、汽车运输、船舶交通等领域获得广泛的应用。

    当前, 对泡沫铝在常温下的动态力学性能有了探讨[1-2], 而在高温下力学性能的研究很少。M.Hakamada等[3]讨论了闭孔泡沫铝在准静态与中应变率(0.000 8~0.2 s-1)高温下的力学性能, 总结出泡沫铝的性能随温度的变化趋势与其基体材料类似; C.M.Cady等[4]研究了Alporas泡沫铝在低温下的动态力学性能, Alporas具有很强的温度依赖性。

    随着航空航天技术的发展, 泡沫材料的应用范围也逐渐拓宽, 空间飞行器苛刻的环境温度以及穿透大气层摩擦生热导致的复杂环境, 使高温动态下泡沫铝力学行为及其机理的研究具有重要的意义。

    由于轻质泡沫铝材料本身的分散性, 以及在动态加载过程中应变率效应与惯性效应的相互耦合的情况, 使对泡沫铝的应变率效应的研究具有一定的挑战, 也对高温下泡沫铝动态力学性能的探讨提出了更高的要求。

    目前, 均匀性假定是分离式Hopkinson压杆的基本假定[5]。在常温下, 利用SHPB实验技术对轻质泡沫材料动态力学性能的研究主要面临两个问题:一个是在低速撞击下, 试件厚度造成的应力不均匀性(波动效应); 另一个是在高速撞击下, 泡沫结构破坏的局域化导致试件的应变/应力不均匀性, 主要由泡沫结构惯性效应引起[6-7]。前者要求缩减应力均匀化时间, 主要通过缩短试件厚度或通过整形器改变加载波形[8]实现。后者则需要控制打击杆速度, 不能太高, 要求试件的变形一定是“均匀变形模式”的[5], 在较高的撞击速度下, 泡沫材料先从冲击端开始变形, 对应变形模式的“冲击模式”[6-7], 此时冲击端的应力远大于后面支撑端的应力[9]

    为解决第一个问题, 我们采用石英晶体片技术检测两端应力, 并确定试件厚度为15 mm保证试件应力的均匀性[10], 如图 1(a)所示。利用石英片检测的试件前后端面应力较一致(消除了薄片惯性力造成的实验误差), 如图 1(b)所示。

    图  1  SHPB实验中试件两端应力检测的石英晶体片法[10]
    Figure  1.  Detect the stresses uniformity of specimen by quartz-crystal method[10]

    为解决第二个问题, 我们采用了两次撞击测量方法[11], 如图 2(a)所示。通过两次实验分别测量试件在同一撞击速度下冲击端与支撑端的应力, 通过此方法获得的两端应力可代表试件在“一次撞击”过程中两端的应力, 利用此测量方法可以探讨试件在高速撞击过程中的应力均匀性, 并可研究泡沫材料在不同撞击速度下对应的三种变形模式[9]:均匀模式, 过渡模式, 冲击模式。冲击模式下冲击端与支撑端的应力曲线显示, 在高速撞击下, 试件的应力并不满足均匀性假定, 如图 2(b)所示。

    图  2  高速撞击下测量泡沫铝两端应力的实验方法[11]
    Figure  2.  Experimental methods to measure the stresses of two ends of foams[11]

    综上所述, 常温动态加载下泡沫材料两端的应力可以通过如图 1(低速下)、图 2(高速下)所示的测试技术获得, 但高温动态下材料力学性能的实验技术更加复杂。首先, 动态高温下, 图 1所示的石英晶体片技术难以应用; 其次, 图 2(a)所示的测量冲击端应力的实验方案已难以实施(见2.1节)。因此, 发展高温、动态加载下泡沫材料两端应力的测量技术很有必要。

    本文中, 主要在Hopkinson压杆的基础上设计一种高温动态实验技术, 重点测量高温动态加载下泡沫材料的两端应力。利用较长的打击杆作为子弹直接撞击Hopkinson杆, 可以有效地检测高温、动态加载下轻质泡沫铝试件两端的应力曲线。采用此实验方案, 观察泡沫铝均匀变形所对应的有效撞击速度, 可利用传统的分离式Hopkinson压杆实验得到泡沫铝在高温动态下的应力应变曲线。

    以前, 通过两种改进的Hopkinson压杆实验装置(见图 2), 分别检测试件在常温下冲击端与支撑端的应力曲线, 证实了随着撞击速度的提高, 泡沫铝两端应力差越大, 变形越不均匀[11]。但是在测量冲击端应力的实验中(见图 2(a)), 试件与打击杆黏结在一起, 难以对试件进行加热与保温, 所以此方案很难应用在高温实验中。

    因此, 我们设计了一种直接撞击法检测高温下冲击过程中试件两端的应力曲线, 可以检测高温高速加载下试件的变形模式, 如图 3所示。

    图  3  改进的直接撞击法实验装置
    Figure  3.  Improved method of direct impact

    枪管内是1 750 mm长的打击杆, 贴在杆端的应变片可直接测量冲击端的应力曲线。采用较长的打击杆, 一方面可保证应变片信号在测试的时间(600 μs)内不受反射波的干扰, 另一方面可以确保打击杆在气枪中有较长的加速段, 以达到较高的撞击速度。右边安置的是长度为4 000 mm的支撑杆, 通过支撑杆上的应变片可测量支撑端的应力曲线。打击杆和支撑杆的杆材为超硬铝, 直径37 mm, 打击杆通过长导管确保对心碰撞。

    高温炉能对静止的试件进行加热并保温, 在高温炉的侧面还开有石英玻璃窗口, 可利用高速CCD拍摄高温下的试件高速变形过程。基于周国才等[12]对封闭式高温炉SHPB实验技术进行的探讨以及在处理数据时对温度梯度的修正方法, 采用长杆直接撞击Hopkinson杆实验可以得到可靠的结果。

    通过直接撞击实验得出了泡沫铝试件在不同速度和温度下冲击端与支撑端的应力曲线, 如图 4~5所示。在撞击速度v≈6.5m/s下, 无论是室温25 ℃还是高温350 ℃的环境, 冲击端与支撑端的应力具有很好的重合性, 试件变形为均匀模式。随着撞击速度的增加(17~26 m/s), 25 ℃下两端的应力重合性尚好, 但是在350 ℃的环境温度下, 冲击端与支撑端应力的差异越来越明显, 变形模式已不再均匀。以上结果表明, 在同一撞击速度下, 温度越高, 试件两端的应力均匀性越差, 增加温度与提高撞击速度均会导致泡沫铝材料冲击端与支撑端的应力不均匀性。

    图  4  不同撞击速度下的两端应力曲线(25 ℃)
    Figure  4.  Stress curves of two ends under different impact velocity (25 ℃)
    图  5  不同撞击速度下的两端应力曲线(350 ℃)
    Figure  5.  Stress curves of two ends under different impact velocity (350 ℃)

    在传统的分离式Hopkinson压杆实验中, 对于波阻抗较低的材料(如肌肉、泡沫材料等), 可以通过石英晶体片技术, 检测试件在常温下前端面与后端面在SHPB动态加载过程中的应力均匀性, 但限于实验条件, 并未对高温下SHPB实验的应力均匀性进行检测, 由实验结果(见图 4~5)可以看出, 在高温下试件的应力均匀性更难满足。

    在SHPB实验中, 弹性波在试件中经过三四个来回的反射, 才可满足“均匀性”假设的要求[13-14]:

    tequ=n2L1c1(T)
    (1)
    c1(T)=E(T)ρ
    (2)

    式中:tequ为应力均匀所需的时间, n为弹性波在试件中来回传播的次数, c1(T)和E(T)分别是弹性波在试件中传播的波速与弹性模量。

    从实验结果可以直观看出, 高温下的应力均匀性变差。对泡沫试件, 随着温度的升高, E(T)逐渐降低, c1(T)也降低, 温度越高, c1(T)越小, 应力均匀所需的时间tequ也较长。

    在SHPB实验中, 通过整形器技术改变入射波上升沿, 可使试件尽早达到应力均匀状态[8, 15]。由于SHPB石英晶体片技术在高温下难以应用, 两端应力难以获取, 因此我们设计了长杆直接撞击Hopkinson杆实验方案检测两端应力, 通过实验得出在高温、同一撞击速度下, 两端应力的不均匀性更严重, 对于低波阻抗材料的SHPB高温实验, 更需检测其应力均匀性。

    在高温350 ℃下, 速度19.55 m/s时两端应力尚存在一些差别, 并不显著, 但速度26.20 m/s时已呈现明显的差别。因此可以确定, 在此高温下需保证两端应力相对均匀的冲击速度v≤19 m/s, 低于这个速度一定可基本消除应力不均匀的影响。同时, 取试件的尺寸∅32 mm×15 mm、密度0.315~0.335 g/cm3, 可以消除尺寸效应与密度分散性的影响[10]

    轻质泡沫铝材料在高温下的SHPB实验装置如图 6所示, 子弹长度800 mm, 入射杆、透射杆均2 000 mm。原始波形如图 7所示, 其中入射波、反射波用电阻应变片测量, 透射波用半导体应变片测量, 每种应变率3次重复实验。不同温度、不同应变率下的工程应力应变曲线如图 8所示。在350 ℃、1 000 s-1下, 对应的子弹速度约16 m/s, 小于在此高温下保持两端应力均匀的冲击速度(约19 m/s), 因此所得到的实验结果有效。图 8中还给出泡沫铝在静态(0.001 s-1)、高低温下的应力应变曲线, 比较表明, 此泡沫铝在高低温下均具有一定的应变率效应, 且高温下的应变率效应比常温下更显著。

    图  6  SHPB高温实验装置图
    Figure  6.  Experimental device of SHPB
    图  7  SHPB实验中的原始波形
    Figure  7.  Original waveform of SHPB
    图  8  不同应变率、高低温下的应力应变曲线
    Figure  8.  Stress-strain curves under different strain-rates, temperatures

    通过对Hopkinson压杆装置的改进, 设计了直接撞击法实验方案, 采用长子弹撞击, 成功检测出高温高速下泡沫铝试件冲击端与支撑端的应力。实验结果指出, 在同一撞击速度下, 温度越高, 试件两端的应力均匀性越差, 增加温度与提高撞击速度均会加剧试件两端的应力不均匀性。利用直接撞击的实验结果, 确定了泡沫铝在350 ℃高温下的保证均匀变形的撞击速度, 再通过传统的分离式Hopkinson压杆实验得出泡沫铝在高温动态下的力学性能, 实验表明泡沫铝在高低温下均具有一定的应变率效应。

  • 图  1  球形弹丸和IN718合金靶板

    Figure  1.  Spherical projectile and IN718 alloy plate

    图  2  二级轻气炮试验示意图

    Figure  2.  Schematic diagram setup for perforation experiment with two-stage light gas gun

    图  3  不同冲击速度下球形弹丸对IN718合金的弹道冲击快照(伪彩色)

    Figure  3.  Snapshots (in pseudo color) of ballistic impact by a spherical projectile on an IN718 nickel-base superalloy target at different impact velocities

    图  4  弹体贯穿靶体的初始-剩余速度

    Figure  4.  Initial versus residual velocities for the targets impacted by spherical projectiles

    图  5  靶板能量吸收效率与弹丸初始动能的关系

    Figure  5.  Relationship between the energy absorption efficiency of the plate and the initial kinetic energy of the projectile

    图  6  试验中靶板最大变形挠度随冲击速度的变化曲线

    Figure  6.  The maximum deflection of the targets impacted at different impact velocities in the test

    图  7  不同冲击速度下靶板的变形与破坏模式

    Figure  7.  Deformation and failure modes of the targets impacted at different impact velocities

    图  8  靶板弹孔直径随初始速度的变化曲线

    Figure  8.  Bullet hole diameter in the targetsimpacted at different impact velocities

    表  1  IN718合金靶板的弹道冲击试验结果

    Table  1.   Test results of the IN718 alloy plates impacted by spherical projectiles

    试验 vi/(m·s−1) vr/(m·s−1) vd/(m·s−1) Ei/J Er/J Ed/J
    1 548.2 0 548.2 76.63 0 76.63
    2 573.8 185.0 388.8 83.96 8.73 75.23
    3 620.9 251.0 369.9 98.31 16.07 82.24
    4 748.0 347.0 401.0 142.67 30.70 111.97
    5 787.0 396.0 391.0 157.94 39.99 117.95
    6 935.0 513.5 421.5 222.93 67.24 155.69
    7 1 067.0 589.0 477.9 290.26 88.46 201.80
    下载: 导出CSV

    表  2  弹道极限速度及R-I模型参数

    Table  2.   Ballistic limit velocity and the R-I model parameters

    弹体材料 vbl/(m·s−1) a p
    304不锈钢 561.0 0.63 2.58
    下载: 导出CSV
  • [1] 《中国航空材料手册》编辑委员会. 中国航空材料手册2: 变形高温合金、铸造高温合金 [M]. 北京: 中国标准出版社, 1989.
    [2] CHEN Y D, HUA J Y, FAN D, et al. High-speed projectile perforation of nickel-based Inconel 718 superalloy plates: experiments and modeling [J]. Thin-Walled Structures, 2023, 192: 111181. DOI: 10.1016/j.tws.2023.111181.
    [3] 庄景云, 杜金辉, 邓群. 变形高温合金GH4169组织与性能 [M]. 北京: 冶金工业出版社, 2011: 1–3.
    [4] HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010.
    [5] BIAN Y L, LIU Q, FENG Z D, et al. High-speed penetration dynamics of polycarbonate [J]. International Journal of Mechanical Sciences, 2022, 223: 107250. DOI: 10.1016/j.ijmecsci.2022.107250.
    [6] HUA J Y, LIU Q, YANG H, et al. High-speed penetration of cast Mg-6Gd-3Y-0.5Zr alloy: experiments and modeling [J]. International Journal of Mechanical Sciences, 2023, 241: 107942. DOI: 10.1016/j.ijmecsci.2022.107942.
    [7] LIU Q, HUA J Y, XU Y F, et al. Ballistic penetration of high-entropy CrMnFeCoNi alloy: experiments and modelling [J]. International Journal of Mechanical Sciences, 2023, 249: 108252. DOI: 10.1016/j.ijmecsci.2023.108252.
    [8] SCIUVA M D, FROLA C, SALVANO S. Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation [J]. International Journal of Impact Engineering, 2003, 28(8): 849–876. DOI: 10.1016/S0734-743X(02)00156-2.
    [9] SANG L J, LU J X, WANG J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. Journal of Materials Science, 2021, 56(28): 16097–16112. DOI: 10.1007/s10853-021-06256-8.
    [10] ZHANG D Y, FENG Z, WANG C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Materials Science and Engineering: A, 2018, 724: 357–367. DOI: 10.1016/j.msea.2018.03.073.
    [11] 邹品. GH4169高温动态本构模型与高速冲击性能研究 [D]. 南京: 南京航空航天大学, 2018.

    ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [12] 宋宗贤. 基于SLM成形的Inconel718镍基高温合金超高周疲劳断裂机理研究 [D]. 太原: 太原科技大学, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.

    SONG Z X. Study on ultrahigh cycle fatigue fracture mechanism of Inconel718 nickel-based superalloy formed by SLM [D]. Taiyuan: Taiyuan University of Science and Technology, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.
    [13] 王建国, 王红缨, 王连庆, 等. GH4169合金高温多轴低周疲劳寿命预测 [J]. 机械强度, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.

    WANG J G, WANG H Y, WANG L Q, et al. Fatigue life prediction for GH4169 superalloy under multi-axial cyclic loading at 650 °C [J]. Journal of Mechanical Strength, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.
    [14] LEE W S, LIN C F, CHEN T H, et al. Dynamic impact response of Inconel 718 alloy under low and high temperatures [J]. Materials Transactions, 2011, 52(9): 1734–1740. DOI: 10.2320/matertrans.M2011130.
    [15] SHOCKEY D A, SIMONS J W, BROWN C S, et al. Shear failure of Inconel 718 under dynamic loads [J]. Experimental Mechanics, 2007, 47(6): 723–732. DOI: 10.1007/s11340-007-9068-2.
    [16] KOBAYASHI T, SIMONS J W, BROWN C S, et al. Plastic flow behavior of Inconel 718 under dynamic shear loads [J]. International Journal of Impact Engineering, 2008, 35(5): 389–396. DOI: 10.1016/j.ijimpeng.2007.03.005.
    [17] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. DOI: 10.1016/S0734-743X(01)00018-5.
    [18] ERICE B, PÉREZ-MARTÍN M J, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. DOI: 10.1016/j.ijimpeng.2014.02.007.
    [19] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
    [20] 刘焦, 郑百林, 杨彪, 等. 镍基合金薄板不同温度下的弹道冲击行为 [J]. 航空材料学报, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.

    LIU J, ZHENG B L, YANG B, et al. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures [J]. Journal of Aeronautical Materials, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.
    [21] RODRÍGUEZ-MILLÁN M, DÍAZ-ÁLVAREZ A, BERNIER R, et al. Experimental and numerical analysis of conical projectile impact on Inconel 718 plates [J]. Metals, 2019, 9(6): 638. DOI: 10.3390/met9060638.
    [22] 吴轲. GH4169高温合金加筋结构机匣抗冲击能力研究 [D]. 南京: 南京航空航天大学, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.

    WU K. Research on impact resistance of GH4169 casing in the form of stiffened structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.
    [23] 谭学明, 郭伟国, 林栋, 等. GCr15弹丸冲击不同厚度GH4169板的变形与破坏模式试验研究 [J]. 振动与冲击, 2022, 41(7): 199–206.

    TAN X M, GUO W G, LIN D, et al. Tests for deformation and failure modes of GH4169 plates with different thickness under GCr15 projectile impact [J]. Journal of Vibration and Shock, 2022, 41(7): 199–206.
    [24] KAWAI N, TSURUI K, HASEGAWA S, et al. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris [J]. Review of Scientific Instruments, 2010, 81(11): 115105. DOI: 10.1063/1.3498896.
    [25] SHARMA P, CHANDEL P, BHARDWAJ V, et al. Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles [J]. Thin-Walled Structures, 2018, 126: 205–219. DOI: 10.1016/j.tws.2017.05.014.
    [26] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566.
    [27] 邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.

    DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.
    [28] DENG Y F, WU H P, ZHANG Y, et al. Experimental and numerical study on the ballistic resistance of 6061-T651 aluminum alloy thin plates struck by different nose shapes of projectiles [J]. International Journal of Impact Engineering, 2022, 160: 104083. DOI: 10.1016/j.ijimpeng.2021.104083.
    [29] RODRÍGUEZ-MILLÁN M, VAZ-ROMERO A, RUSINEK A, et al. Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles [J]. Experimental Mechanics, 2014, 54(5): 729–742. DOI: 10.1007/s11340-013-9829-z.
    [30] RODRIGUEZ-MILLÁN M, GARCIA-GONZALEZ D, RUSINEK A, et al. Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles [J]. Thin-Walled Structures, 2018, 123: 1–10. DOI: 10.1016/j.tws.2017.11.004.
  • 期刊类型引用(9)

    1. 袁良柱,陈美多,谢雨珊,陆建华,王鹏飞,徐松林. 细观非连续介质的应力波传播研究. 爆炸与冲击. 2024(09): 50-61 . 本站查看
    2. 朱凌,郭开岭,余同希,李应刚. 泡沫金属夹芯梁在重复冲击下的动态响应. 爆炸与冲击. 2021(07): 60-70 . 本站查看
    3. 樊建领,马连生,苏厚德. 泡沫材料圆板的非线性弯曲行为分析. 甘肃科学学报. 2018(05): 80-84 . 百度学术
    4. 周楠,蒋敬,樊武龙,唐松泽. 泡沫铝夹芯材料抗爆抗侵彻性能研究进展. 科学技术与工程. 2017(04): 117-125 . 百度学术
    5. 王巍,安子军,彭春彦,黄华贵. 闭孔泡沫材料3-D几何建模及力学性能分析. 塑性工程学报. 2017(04): 194-200 . 百度学术
    6. 钱立志,蒋滨安,宁全利,李俊. 弹载器件的过载时间累积效应研究. 振动与冲击. 2017(24): 237-241 . 百度学术
    7. 李志斌. 闭孔泡沫铝的高温局部压入力学响应. 爆炸与冲击. 2016(05): 734-738 . 本站查看
    8. 杜金晶,王斌,曹卓坤,姚广春,梁李斯. 镀铜碳纤维增强铝基泡沫材料结构的特性表征. 材料导报. 2016(06): 82-85+115 . 百度学术
    9. 胡时胜,王礼立,宋力,张磊. Hopkinson压杆技术在中国的发展回顾. 爆炸与冲击. 2014(06): 641-657 . 本站查看

    其他类型引用(8)

  • 加载中
推荐阅读
高空强爆炸x射线辐照铝靶板动响应的数值模拟
余润洲 等, 爆炸与冲击, 2025
冲击荷载下含铜矿岩能量耗散的数值模拟
左庭 等, 爆炸与冲击, 2025
动载荷下固体推进剂损伤演化原位成像研究
苑永祥 等, 爆炸与冲击, 2025
强冲击载荷下单向加筋板拉伸撕裂的临界条件
姚熊亮 等, 爆炸与冲击, 2024
弹丸高速侵彻下az31b镁合金响应的数值模拟研究
周涛 等, 高压物理学报, 2025
简论钢板在平头弹撞击下的穿透
杨岚夫 等, 高压物理学报, 2025
脉冲应力冲击下30crmnmo钢的绝热剪切失效行为
程昊 等, 高压物理学报, 2024
A review on the high energy oxidizer ammonium dinitramide: its synthesis, thermal decomposition, hygroscopicity, and application in energetic materials
Chen, Fu-yao et al., DEFENCE TECHNOLOGY, 2023
Mechanical response behavior, constitutive modeling and microstructural evolution of a 7003-t6 al alloy rolled plate under high-speed impact loading
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025
Investigation on dynamic deformation and damage of steel ribbon wound vessel for hydrogen storage under fragment impact loading
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME
Powered by
图(8) / 表(2)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  126
  • PDF下载量:  97
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-11-30
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-02-06

目录

/

返回文章
返回