水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究

徐维铮 赵宏涛 李业勋 黄宇 傅华

徐维铮, 赵宏涛, 李业勋, 黄宇, 傅华. 水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究[J]. 爆炸与冲击, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072
引用本文: 徐维铮, 赵宏涛, 李业勋, 黄宇, 傅华. 水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究[J]. 爆炸与冲击, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072
XU Weizheng, ZHAO Hongtao, LI Yexun, HUANG Yu, FU Hua. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion And Shock Waves, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072
Citation: XU Weizheng, ZHAO Hongtao, LI Yexun, HUANG Yu, FU Hua. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion And Shock Waves, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072

水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究

doi: 10.11883/bzycj-2023-0072
基金项目: 中国工程物理研究院培育基金(PY20200003);装备预先研究领域基金(80928010101)
详细信息
    作者简介:

    徐维铮(1991- ),男,博士,助理研究员,xuweizheng@whut.edu.cn

    通讯作者:

    黄 宇(1986- ),男,博士,助理研究员,huangyu@buaa.edu.cn

  • 中图分类号: O382.1

An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion

  • 摘要: 为加深水下近距/接触爆炸加载下圆柱壳结构动态响应行为认识,设计典型圆柱壳结构模型,开展了水下近距/接触爆炸加载下圆柱壳结构动态响应光电联合测试,获得了冲击波、气泡与圆柱壳结构相互作用高速光学物理图像、动态应变、超压载荷、毁伤模式等试验数据。通过高速光学物理图像和三维激光扫描毁伤形态的分析,给出了冲击波、气泡与圆柱壳结构相互作用物理过程及最终毁伤模式;通过动态应变的分析,给出了圆柱壳结构迎爆面和背爆面在加载过程中应变拉伸压缩转变和响应阶段的划分;通过超压载荷的分析,明确了装药爆轰完全性以及接触爆炸加载下结构吸能对超压的影响。研究表明:爆距的变化会显著影响圆柱壳结构的毁伤形态,近距加载下圆柱壳结构主要呈现塑性大变形,接触加载下圆柱壳结构主要呈现撕裂破坏;近距加载下圆柱壳结构迎爆面空化区的形成及溃灭形成的二次加载毁伤效应不容忽视,值得深入研究;研究成果可为水下近距/接触爆炸加载下圆柱壳结构毁伤评估提供参考和依据。
  • 图  1  圆柱壳结构模型

    Figure  1.  Model of cylindrical shell

    图  2  试验加载工况图

    Figure  2.  Experimental loading cases

    图  3  试验测试布置示意图(左为俯视图,右为正视图)

    Figure  3.  Experimental layout (left: top view, right: front view)

    图  4  近距爆炸加载圆柱壳结构动态响应物理图像(工况1)

    Figure  4.  Physical picture of dynamic response of cylindrical shell under near-field explosion(case 1)

    图  5  近距爆炸加载圆柱壳毁伤模式图像(工况1)

    Figure  5.  Damage mode of cylindrical shell under near-filed explosion (case 1)

    图  6  接触爆炸加载圆柱壳结构动态响应物理图像(工况2)

    Figure  6.  Physical pictures of dynamic response of the cylindrical shell under contact explosion(case 2)

    图  7  接触爆炸加载圆柱壳毁伤模式图像(工况2)

    Figure  7.  Damage mode under contact explosion(case 2)

    图  8  动态应变响应时间历程曲线(工况1)

    Figure  8.  Time histories of dynamic strain for case 1

    图  9  动态应变响应时间历程曲线(工况2)

    Figure  9.  Time histories of dynamic strain for case 2

    图  10  两种试验工况下超压的时间历程曲线

    Figure  10.  Overpressure time histories of two experimental cases

  • [1] 姜涛, 王桂芹, 詹发民, 等. 基于AUTODYN的潜艇典型舱段水中爆炸冲击损伤研究 [J]. 爆破器材, 2015, 44(6): 61–64. DOI: 10.3969/j.issn.1001-8352.2015.06.014.

    JIANG T, WANG G Q, ZHAN F M, et al. Impact damage analysis of typical submarine compartment subjected to underwater blasting based on AUTODYN [J]. Explosive Materials, 2015, 44(6): 61–64. DOI: 10.3969/j.issn.1001-8352.2015.06.014.
    [2] YUAN J H, ZHU X. Dynamic response of a ring-stiffened cylindrical shell subjected to underwater explosive loading [J]. Applied Mechanics and Materials, 2011, 105: 931–936. DOI: 10.4028/www.scientific.net/AMM.105-107.931.
    [3] BROCHARD K, LE SOURNE H, BARRAS G. Estimation of the response of a deeply immersed cylinder to the shock wave generated by an underwater explosion [J]. Marine Structures, 2020, 72: 102786. DOI: 10.1016/j.marstruc.2020.102786.
    [4] NGUYEN V T, PHAN T H, DUY T N, et al. Numerical modeling for compressible two-phase flows and application to near-field underwater explosions [J]. Computers and Fluids, 2021, 215: 104805. DOI: 10.1016/j.compfluid.2020.104805.
    [5] BRETT J M, YIANNAKOPOLOUS G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225. DOI: 10.1016/j.ijimpeng.2007.01.007.
    [6] BRETT J M, YIANNAKOPOULOS G, VAN DER SCHAAF P J. Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion [J]. International Journal of Impact Engineering, 2000, 24(9): 875–890. DOI: 10.1016/S0734-743X(00)00023-3.
    [7] HUNG C F, LIN B J, HWANG-FUU J J, et al. Dynamic response of cylindrical shell structures subjected to underwater explosion [J]. Ocean Engineering, 2009, 36(8): 564–577. DOI: 10.1016/j.oceaneng.2009.02.001.
    [8] GANNON L. Submerged aluminum cylinder response to close-proximity underwater explosions-a comparison of experiment and simulation [J]. International Journal of Impact Engineering, 2019, 133: 103339. DOI: 10.1016/j.ijimpeng.2019.103339.
    [9] GANNON L. Simulation of underwater explosions in close-proximity to a submerged cylinder and a free-surface or rigid boundary [J]. Journal of Fluids and Structures, 2019, 87: 189–205. DOI: 10.1016/j.jfluidstructs.2019.03.019.
    [10] 刘晓波, 李帅, 张阿漫. 水下爆炸冲击波壁压理论及数值计算方法改进研究 [J]. 爆炸与冲击, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106.

    LIU X B, LI S, ZHANG A M. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion [J]. Explosion and Shock Waves, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106.
    [11] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8.
    [12] 周明, 赵云涛, 李万全, 等. JH-14装药水中爆炸特征研究 [J]. 爆破器材, 2019, 48(3): 18–22. DOI: 10.3969/j.issn.1001-8352.2019.03.004.

    ZHOU M, ZHAO Y T, LI W Q, et al. Research on underwater explosion characteristics of JH-14 charge [J]. Explosive Materials, 2019, 48(3): 18–22. DOI: 10.3969/j.issn.1001-8352.2019.03.004.
  • 加载中
图(10)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  75
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-08-20
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回