Analysis of the dynamic response of prestressed concrete frame structures under blast load
-
摘要: 为了研究预应力混凝土(prestressed concrete, PC)框架结构的抗爆性能,利用有限元软件LS-DYNA对一栋3层2跨的大跨有/无黏结PC框架结构在不同比例距离的外部远爆荷载作用下的动力响应进行了分析。分析结果表明:混凝土预应力框架在地表远爆荷载作用下,最大层间位移角与前墙所受峰值反射超压近似成线性关系;有黏结混凝土预应力框架结构层间位移角相较于无黏结混凝土预应力框架更小,损伤分布更均匀,结构抗爆性能更好;基于分析结果,给出了不同比例距离对应的损伤状态,可用于对混凝土预应力框架结构进行爆炸损伤状态快速评估。Abstract: To study the anti-blast performance of prestressed concrete (PC) frame structure, the dynamic response of a 3-story 2-span long-span bonded/unbonded PC frame structure under the action of external remote blast loads of different scaled distances was analyzed using the finite element software LS-DYNA. In the different blast conditions, the type of explosion was a surface detonation, the explosion distance was 100 m, and the scaled distances were 2−8 m/kg1/3. Explosive loads on the building surface were calculated according to unified facilities criteria 3-340-02. The different types of prestress in the numerical model were realized by controlling the direction of coupling of concrete and prestressing tendons. To validate the numerical model, the results of the numerical simulations were compared with the experimental results. The blast resistance mechanism, story drift ratios, structural damage mode, and damage assessment of PC frames were analyzed under blast loads at different scaled distances. The analysis results show that the ground floor of the large-span PC frame is easy to damage under the action of the external remote blast load, and the ground floor columns can be strengthened to improve the overall structural blast resistance. In the PC frame, columns relative to the frame beams are weaker and prone to damage. The PC frame structure with a low degree of redundancy is easy to collapse. The maximum story drift ratio of the prestressed concrete frame under the surface blast load is approximately linearly related to the peak reflected overpressure applied to the front wall. Compared with the unbonded prestressed concrete frame, the bonded prestressed concrete frame structure has a smaller story drift ratio, more uniform damage distribution, and better structural blast resistance. Based on the analysis results, the damage states at different scaled distances was given, which can realize the rapid assessment of the explosion damage state of prestressed concrete frame structures.
-
Key words:
- blast load /
- dynamic response analysis /
- prestress /
- concrete frame
-
表 1 钢筋材料参数
Table 1. Material properties of reinforcement
钢筋 面积/mm2 屈服强度/MPa 极限强度/MPa W0.5 3.22 441 513 D1 6.45 399 610 D5 32.20 449 513 表 2 混凝土材料参数
Table 2. Material properties of concrete
龄期/d 弹性模量/GPa 密度/(kg·m−3) 抗压强度/MPa 28 28.7 2068 42.0 103~132 30.3 2068 44.7 表 3 各工况的爆炸参数
Table 3. Blast load parameters
工况 Z/(m·kg−1/3) W/kg pr,front/kPa ta/ms trf/ms pr,roof/kPa td//ms tof/ms pr,rear/kPa $t'_{\rm{a}} $/ms $t'_{\rm{b}} $/ms $t'_{\rm{of}} $/ms 1 2.0 125000 1056.0 84.8 119 91.80 115 206 90.30 149 188 269 2 3.0 37037 331.0 118.0 163 39.70 167 275 40.10 199 242 323 3 3.5 23323 223.0 132.0 180 28.50 184 301 30.20 218 261 341 4 4.0 15625 162.0 145.0 194 21.60 196 315 23.60 234 277 357 5 5.0 8000 101.0 165.0 215 13.70 219 337 15.80 259 303 375 6 6.0 4630 71.3 181.0 229 9.53 231 348 11.50 277 324 390 7 7.0 2916 54.7 193.0 238 7.01 242 358 8.72 290 338 398 8 8.0 1953 44.1 202.0 245 5.45 252 366 6.76 301 350 404 -
[1] 李砚召, 王肖钧, 张新乐, 等. 预应力混凝土结构抗爆性能试验研究 [J]. 实验力学, 2005, 20(2): 179–185. DOI: 10.3969/j.issn.1001-4888.2005.02.004.LI Y Z, WANG X J, ZHANG X L, et al. Test study on anti-detonation quality of prestressed concrete structure [J]. Journal of Experimental Mechanics, 2005, 20(2): 179–185. DOI: 10.3969/j.issn.1001-4888.2005.02.004. [2] 李砚召, 郭晓辉, 曹海. 预应力混凝土梁平面装药加载试验研究 [R]//中国国防科学技术报告. 2002. [3] 胡志坚, 张一峰, 俞文生, 等. 近场爆炸时预应力混凝土梁体抗爆分析 [J]. 中国公路学报, 2019, 32(3): 71–80. DOI: 10.19721/j.cnki.1001-7372.2019.03.008.HU Z J, ZHANG Y F, YU W S, et al. Anti-blast resistance analysis of prestressed concrete bridges under close-by blast [J]. China Journal of Highway and Transport, 2019, 32(3): 71–80. DOI: 10.19721/j.cnki.1001-7372.2019.03.008. [4] CHEN W S, HAO H, CHEN S Y. Numerical analysis of prestressed reinforced concrete beam subjected to blast loading [J]. Materials and Design, 2015, 65: 662–674. DOI: 10.1016/j.matdes.2014.09.033. [5] 宁显东. 有粘结预应力混凝土框架结构抗连续倒塌性能分析 [D]. 南宁: 广西大学, 2018: 33–51. DOI: 10.7666/d.Y3434506.NING X D. Analysis on progressive collapse performanceof bonded prestressed concrete frame construction [D]. Nanning: Guangxi University, 2018: 33–51. DOI: 10.7666/d.Y3434506. [6] 张鹏. 预应力混凝土框架结构的抗连续倒塌性能研究 [D]. 西安: 西安工业大学, 2016: 25–56. DOI: 10.7666/d.Y3078301.ZHANG P. Performance research of progressive collapse on prestressed concrete frame structure [D]. Xi’an: Xi’an Technological University, 2016: 25–56. DOI: 10.7666/d.Y3078301. [7] QIAN K, ZHANG X D, FU F, et al. Progressive collapse-resisting mechanisms of planar prestressed concrete frame [J]. ACI Structural Journal, 2019, 116(4): 77–90. DOI: 10.14359/51715567. [8] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7. [9] LI J, HAO H. Influence of brittle shear damage on accuracy of the two-step method in prediction of structural response to blast loads [J]. International Journal of Impact Engineering, 2013, 54: 217–231. DOI: 10.1016/j.ijimpeng.2012.11.008. [10] WOODSON S C, BAYLOT J T. Quarter-scale building/column experiments [C]// Elgaaly M. Advanced Technology in Structural Engineering. Philadelphia, Pennsylvania, USA: American Society of Civil Engineers, 2000: 1–8. DOI: 10.1061/40492(2000)99. [11] BAYLOT J T, BEVINS T L. Effect of responding and failing structural components on the airblast pressures and loads on and inside of the structure [J]. Computers & Structures, 2007, 85(11): 891–910. DOI: 10.1016/j.compstruc.2007.01.001. [12] WOODSON S C, BAYLOT J T. Structural collapse: quarter-scale model experiments: SL-99-8[R]. US Army Corps of Engineers Engineer Research and Development Center, 1999. [13] US Army Corps of Engineers. Structures to resist the effects of accidental explosions: TM5-1300 [S]. Washington DC: Department of the Army, 1990. [14] SHI Y C, HAO H, LI Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001. [15] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2011. [16] US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. Washington DC: The US Department of Army, 2008. [17] United States General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects: GSA2003 [S]. Washington, DC: General Services Administration, 2003. [18] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010.