Absorption characteristics of methane-air mixture explosion energyby foam metal with a corrugated surface against explosion
-
摘要: 为进一步探究气体爆炸荷载下异构迎爆面泡沫金属的吸能特性,在前期开展锯齿结构迎爆面材料吸能特性实验的基础上,以3种波纹结构迎爆面(凸面型、凹面型和凹凸连续型)泡沫金属材料为研究对象,利用自主搭建的气体爆炸管网实验平台,开展了该泡沫金属材料在甲烷-空气混合气体爆炸荷载下的吸能特性测定实验。采用不同波纹结构迎爆面阻隔爆材料,测定了管道内爆炸冲击波超压、火焰传播速度和火焰温度等随时间和空间的变化,分析了不同波纹结构迎爆面阻隔爆材料的吸能效果。结果表明:(1)迎爆面为波纹结构的泡沫金属材料对爆炸超压的衰减效果优于迎爆面为锯齿结构的泡沫金属材料和迎爆面为平面结构的泡沫金属材料,且迎爆面为凸面型波纹结构和凹凸连续型波纹结构的泡沫金属材料对超压衰减的速率高于迎爆面为锯齿结构和凹面型波纹结构的泡沫金属材料;迎爆面为锯齿结构的泡沫金属材料对火焰传播速度的衰减略强于迎爆面为波纹结构和平面结构的泡沫金属材料;迎爆面为波纹结构的泡沫金属材料对火焰温度的衰减效果优于迎爆面为锯齿结构及平面结构的泡沫金属材料。(2)在本文实验条件下,3种波纹结构(凸面型、凹面型和凹凸连续型)迎爆面泡沫金属材料的熄爆参数分别为5.338、4.340和6.090 MPa·℃,低于锯齿结构迎爆面材料的熄爆参数17.680 MPa·℃,且远低于熄爆参数安全值390 MPa·℃,波纹结构迎爆面材料具有良好的防护效果。(3)这3种迎爆面为波纹结构的泡沫金属材料均具有良好的吸能特性,均优于迎爆面为锯齿形结构的泡沫金属材料,且明显优于迎爆面为平面结构的泡沫金属材料。Abstract: To further explore the energy absorption characteristics of the foamed metal with the explosion-facing surface structure different from that of its base subjected to a gas explosion, based on the previous experiments carried on the energy absorption characteristics of serrated structural materials, mixed methane-air explosion energy absorption tests were conducted by using the self-built gas explosion pipe network experimental platform. Three kinds of different corrugated foamed metals were chosen as the explosion-proof materials, and their explosion-facing surfaces took on full convex, full concave, and continuous concave/convex, respectively. The variations of the corresponding typical physical quantities with time and space were measured and analyzed, including explosion shock wave overpressure, flame propagation velocity, and flame temperature. Results are shown as follows. (1) The foamed metals with corrugated structures can reduce explosion overpressure more effectively than the ones with the serrated structure and plane structure, and the foamed metals with fully convex and continuous concave-convex corrugated structures can decrease the explosion shock wave overpressure faster than the ones with serrated and full-concave structures. Additionally, the foamed metals with serrated structures can slow the flame propagation velocity down slightly faster than the ones with the corrugated and plane structures. And the foamed metals with the corrugated structures can weaken the flame temperature more strongly than the ones with the serrated and plane structures. (2) The quenching parameters of the corrugated foam metals whose explosion-facing surfaces taking on full convex, full concave and continuous concave/convex are 5.338, 4.340 and 6.090 MPa·°C, respectively, which are lower than that of the one with the serrated explosion-facing surface 17.680 MPa·°C, and far lower than the safety value 390 MPa·°C, indicating that the foamed metals with the corrugated explosion-facing surface have better explosion-proof capabilities. (3) The energy absorption performances of the foamed metals with the corrugated explosion-facing surfaces are stronger than those of the ones with the serrated explosion-facing surfaces, and are obviously stronger than that of the one with the plane explosion-facing surface. In addition, the foamed metals with the corrugated explosion-facing surfaces can still keep intact after the experiments, displaying that their material strengths are higher than those of the ones with the serrated structures.
-
煤层气(coal-bed methane,CBM)又称煤层瓦斯,主要成分是甲烷,归类于非常规天然气[1-2],是优质的化工和能源原料。在对煤层气中甲烷进行低温液化分离的过程中,气体中甲烷浓度有可能穿过爆炸极限,在此过程中甲烷有可能发生爆炸,这对分离提纯系统非常危险。煤层气液化过程中危险性较高的是低温分馏阶段,该过程中,降温后的煤层气经过节流、压力降低、甲烷液化等过程,分离出氧气、氮气,该阶段属于“低温低压”的工况范围。分馏塔顶部气相甲烷含量较少,可能会处于爆炸极限范围内,若遇到零星火花或外界热源,有可能引发燃烧爆炸。为了评估爆炸危险程度,保证安全生产和优化工艺操作过程,有必要讨论可燃性气体在工作环境下(主要是温度和压力)的爆炸特性[3]。
最小点火能这一概念是由Lewis等[4],主要是针对气体电火花点火而言。Eckhoff[5]组建了电火花发生器,测量得到丙烷-空气混合气的最小点火能为0.48 mJ;Sacks等[6]论证了闪电可以引起矿井下瓦斯气体的点火;Han等[7]通过数值方法进行了研究,得到当量比、电极间距和电极半径对甲烷-空气混合气体最小点火能、熄灭距离和点火延迟期产生的影响;Kelley等[8]通过实验得到了不同当量比和不同压力下,火花点火的球形火焰持续传播的最小点火半径。谭迎新等[9]根据标准[10]测得几种可燃气体(液体蒸气)的最小点火能数据。当前通用的标准包括美国试验与材料协会标准[11]、美国汽车工程师学会标准[12]、法国国家标准[13]、以及国际电工委员会标准[14]等。
本文中,通过实验与计算相结合的方法,利用甲烷最小点火能测试装置,对特定工况下的甲烷最小点火能进行测定,并进行数据分析。
1. 测试装置及测试步骤
1.1 实验装置
最小点火能测试装置示意图如图 1所示。爆炸容器高度为300 mm,内径为100 mm,壁厚为25 mm,能承压45 MPa。爆炸容器放置于制冷箱内腔中,并带有自动控温系统。可燃气体的初始温度由位于容器中心的快速响应热电偶测试得到,热电偶测温范围为-185~370 ℃,响应时间为20 μs,耐受压力34 MPa,瞬间耐高温1 800 ℃。
可燃气体初始压力通过精密压力计进行测试,压力计的精度等级为0.02。采用电火花放电,由位于容器中心的两个不锈钢电极放出。爆炸压力通过电荷型压电传感器(Dytran 2300C5)测试得到,传感器的采样频率为500 kHz,传感器与电荷放大器配合使用。
爆炸温度由快速响应热电偶测试得到,热电偶测温范围为-40~1768 ℃,瞬间耐高温2100 ℃,耐高压34 MPa,响应时间20 μs。本文中,参考标准BS-EN-1839-2003[11],当爆炸压力增加了初始压力的5%即认为发生了爆炸。
在传统的最小点火能测试中,采用的点火能量E计算公式为:
E=CU2/2 (1) 式中:E为最小点火能,C为储能电容,U为放电电压。
由于电路阻抗和杂散电容的影响,由式(1)得到的结果往往偏大。本文中,装置点火电路如图 2所示。放电过程中,电流探针和电压探头分别测量通过电极的电流i(t)和两侧的电压u(t),结果由示波器记录。典型的电流和电压-时间曲线如图 3所示。精确的火花能量计算公式为:
E=∫t0u(t)i(t)dt (2) 1.2 测试步骤
爆炸容器先用氮气进行吹扫,然后真空泵抽真空。实验气体通过分压法配置,通气的次序为甲烷-空气。在点火前,通过取样阀取少量混合气体,利用气象色谱仪准确测试其浓度作为混合气体浓度。打开制冷装置,使爆炸容器内的气体进行降温至目标温度。然后关闭制冷系统,触发火花发生器。先选择一个足以击穿电极的电压和电容。然后逐渐减小电容值直到连续25次放电实验不能点燃气体为止。此时的点火能量为该条件下的最小点火能Em,通过式(2)计算得到。在实验中,连续两次放电应保证15~20 s的间隔,以使上次的电能充分耗散。
实验完成后,在下一次实验之前,先用3倍体积的氮气吹扫容器,然后用真空泵抽真空。为了保证实验的可重复性,每种工况做3组平行实验[12]。
2. 测试结果及分析
2.1 敏感条件的确定
在所有实验条件的组合中,使得点火能量达到最小的实验条件为敏感条件。本实验中,应考虑的敏感条件为电极间隙和当量比。通过实验,得到电极间隙和当量比对储存最小点火能Em的影响分别如图 4~5所示。从图 4可以看出,存在一个最佳的电极间隙(1 mm)使得点火能量达到最小。从图 5可以看出,当量比为1时点火能达到最小。因此,本文中,所有的实验测试是在电极间隙为1 mm,当量比为1的条件下进行的。
2.2 实验装置的验证
图 6是实验时数据采集系统记录的混合气体成功点燃时的压力-时间曲线,从图 6可以看出,点火后混合气体压力短时间内迅速上升,压力变化大于初始压力的5%,故认定混合气体被成功点燃。
表 1给出了本文得到的甲烷的最小点火能与其他研究人员的结果对比。可以看出,Lewis等[4]得到的结果最小。但Eckhoff等[5]的研究结果表明Lewis等[4]提出的值过于保守。Kondo等[13]提出的结果也偏小,这是因为该结果是他们通过计算得到的,而并非实验。本文实验结果与Yuasa[14]等人得出的实验结果相近。在误差允许范围内,本文结果与文献[14]的差距不大,因此,本实验中的实验装置是有效的。
2.3 最小点火能测试结果
最小点火能Em的测试结果如表 2和图 7所示。表 2提供了最小点火能的测试值和标准偏差(不确定度),图 7显示了通过式(1)计算的结果和通过式(2)积分的结果。由图 7可知,本文中,实际火花的能量是储能的10%~20%。
表 2 最小点火能测试结果及标准偏差Table 2. MIE test results and standard deviation压力/MPa Em/mJ 不确定度 183 K 213 K 243 K 273 K 183 K 213 K 243 K 273 K 0.1 0.880 0.720 0.650 0.560 0.0160 0.0160 0.0220 0.0280 0.3 0.102 0.080 0.076 0.068 0.0070 0.0080 0.0110 0.0160 0.5 0.037 0.034 0.030 0.026 0.0014 0.0060 0.0100 0.0090 2.4 压力对最小点火能的影响
图 8所示为初始压力p对最小点火能的影响。数据点是平均值而误差棒是标准偏差。从图 8可以看出,随着初始压力的增加,最小点火能减小。当初始压力小于0.3 MPa时,最小点火能随着压力增加大大减小。而当初始压力大于0.3 MPa时,最小点火能随着初始压力增加而缓慢下降。
最小点火能Em(mJ)随1/p2(MPa-2)的变化关系如图 9所示。采用线性回归的方法对数据进行处理,可得:
Em={0.005 01+0.005 55/p2 273 K0.004 2+0.006 46/p2 243 K0.002 93+0.007 17/p2 213 K0.003 19+0.008 77/p2 183 K (3) 式(3)的决定系数R2≥0.999。式(3)表明,在某一初始温度下,最小点火能与1/p2呈高度线性相关。
2.5 温度对最小点火能的影响
图 10为温度(T)对最小点火能的影响。随着温度的增加,最小点火能减小:低压下(如0.1 MPa)随温度的升高最小点火能大大减小;压力大于0.1 MPa时,随着温度的升高最小点火能缓慢减小。
图 11给出了最小点火能Em(mJ)和1/T(K-1)的关系。对图中的数据进行线性回归,可得:
Em={−0.073 15+172.966 87/T 0.1 MPa,R2=0.9850.000 261 313+18.115 96/T 0.3 MPa,R2=0.9080.004 61+3.051 21/T 0.5 MPa,R2=0.951 (4) 式(4)表明,最小点火能与1/T呈近似线性相关。
2.6 依据实验结果的拟合公式
通过实验数据拟合,可得最小点火能的计算公式:
Em=(0.032 17+0.062 13/p2)(−0.011 5+27.648 3/T) (5) 式中:Em的单位为mJ,p的单位为MPa,T的单位为K,校正决定系数R2=0.999。依据公式(5)对最小点火能进行计算,得出实验结果与计算结果的差值要小于实验的标准偏差(不确定度)。因此,拟合得到的公式能够很好地预测一定工况范围内压力和温度升高情形下的最小点火能的值。
3. 结论
本文利用自行构建的实验装置成功测试了-90~0 ℃、0.1~0.5 MPa工况下甲烷的最小点火能,得到以下主要结论。(1)在上述工况范围内,使甲烷-空气混合气体点火能达到最小的敏感电极间隙为1.0 mm,敏感浓度为化学计量浓度(当量比为1)。(2)在上述工况范围内,甲烷最小点火能随初始压力的升高而减小,且低压(小于等于0.3 MPa)时甲烷最小点火能随初始压力的增高减小较快,高压(大于0.3 MPa)时减小较慢;另外,甲烷最小点火能与压力平方的倒数呈近似线性关系。(3)在上述工况范围内,甲烷最小点火能随初始温度的升高而减小。且低压(小于等于0.1 MPa)时甲烷最小点火能随初始温度的增高减小较快,高压(大于0.1 MPa)时减小较慢;另外,甲烷最小点火能与温度的倒数呈近似线性关系。(4)在上述工况范围内,拟合了甲烷最小点火能关于温度和压力的表达式,该式能较好地预测混合气体初始温度、初始压力变化时甲烷的最小点火能。
-
表 1 实验材料迎爆面设计参数
Table 1. Design parameters of explosion-resistant material surface against explosion
实验 波纹结构 实验材料 体密度/(g·cm−3) 波纹峰高/mm 基材厚度/mm 1 平面 泡沫铁镍 0.5 15 2 凸面 泡沫铁镍 0.5 5 15+5 3 凹面 泡沫铁镍 0.5 5 15−5 4 凹凸连续 泡沫铁镍 0.5 5 15+5 表 2 不同工况下超压衰减率和超压下降速率的对比
Table 2. Comparison of overpressure decay ratios and overpressure decrease rates under different experimental conditions
实验 pmax/MPa pi/MPa ζ/% (dp/dt)/(MPa·s−1) 1 0.828 0.446 46.13 20.870 2 0.704 0.021 97.01 39.140 3 0.659 0.019 97.11 35.380 4 0.688 0.020 97.00 41.750 表 3 不同表面结构阻隔爆材料的火焰温度衰减率和熄爆参数
Table 3. Flame temperature attenuation ratios and quenching parameters for explosion resistant material with different surface structures
实验 T/℃ 温度差/℃ η/% θ1/(MPa·℃) θ2/(MPa·℃) T1 T2 T3 空管 905.661 1157.003 750.996 406.007 35.09 585.443 793.802 1 1127.768 1450.525 428.283 1252.242 70.47 1201.034 191.014 2 1010.970 1298.388 239.050 1059.338 81.59 920.701 5.375 3 1120.109 1569.337 228.472 1340.865 85.44 1034.193 4.340 4 1150.744 1505.753 304.629 1201.124 79.76 1035.958 6.092 -
[1] 杜祥琬. 杜祥琬院士演讲实录: 对我国实现碳达峰、碳中和战略及路径的思考 [EB/OL]. (2023-06-28)[2023-07-14]. https://www.163.com/dy/article/I8BD728S0532GRZG.html. [2] 胡志坚, 刘如, 陈志. 中国“碳中和”承诺下技术生态化发展战略思考 [J]. 中国科技论坛, 2021(5): 14–20. DOI: 10.13580/j.cnki.fstc.2021.05.003.HU Z J, LIU R, CHEN Z. Strategic thinking on the ecological development of technology under China’s “carbon neutrality” commitment [J]. Forum on Science and Technology in China, 2021(5): 14–20. DOI: 10.13580/j.cnki.fstc.2021.05.003. [3] MALLAPATY S. How China could be carbon neutral by mid-century [J]. Nature, 2020, 586(7830): 482–483. DOI: 10.1038/d41586-020-02927-9. [4] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展 [J]. 天然气工业, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.020.ZHOU S H, WANG J, LIANG Y. Development of china's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.020. [5] 林柏泉. 瓦斯爆炸动力学特征参数的测定及其分析 [J]. 煤炭学报, 2002, 27(2): 164–167. DOI: 10.3321/j.issn:0253-9993.2002.02.011.LIN B Q. The measurement and analysis of dynamics feature parameter in gas explosion [J]. Journal of China Coal Society, 2002, 27(2): 164–167. DOI: 10.3321/j.issn:0253-9993.2002.02.011. [6] 林柏泉, 洪溢都, 朱传杰, 等. 瓦斯爆炸压力与波前瞬态流速演化特征及其定量关系 [J]. 爆炸与冲击, 2015, 35(1): 108–115. DOI: 10.11883/1001-1455(2015)01-0108-08.LIN B Q, HONG Y D, ZHU C J, et al. Quantitative relationship between flow speed and overpressure of gas explosion in the open-end square tube [J]. Explosion and Shock Waves, 2015, 35(1): 108–115. DOI: 10.11883/1001-1455(2015)01-0108-08. [7] 曲志明, 周心权, 王海燕, 等. 瓦斯爆炸冲击波超压的衰减规律 [J]. 煤炭学报, 2008(4): 410–414. DOI: 10.3321/j.issn:0253-9993.2008.04.012.QU Z M, ZHOU X Q, WANG H Y, et al. Overpressure attenuation of shock wave during gas explosion [J]. Journal of China Coal Society, 2008(4): 410–414. DOI: 10.3321/j.issn:0253-9993.2008.04.012. [8] 陈先锋, 陈明, 张庆明, 等. 瓦斯爆炸火焰精细结构及动力学特性的实验 [J]. 煤炭学报, 2010, 35(2): 246–249. DOI: 10.13225/j.cnki.jccs.2010.02.029.CHEN X F, CHEN M, ZHANG Q M, et al. Experimental investigation of gas explosion microstructure and dynamic characteristics in a semi-vented pipe [J]. Journal of China Coal Society, 2010, 35(2): 246–249. DOI: 10.13225/j.cnki.jccs.2010.02.029. [9] 江丙友, 林柏泉, 朱传杰, 等. 瓦斯爆炸过程中火焰瞬时传播规律研究 [J]. 中国安全科学学报, 2010, 20(8): 97–101. DOI: 10.16265/j.cnki.issn1003-3033.2010.08.012.JIANG B Y, LIN B Q, ZHU C J, et al. Instantaneous flame propagation law of gas explosion [J]. China Safety Science Journal, 2010, 20(8): 97–101. DOI: 10.16265/j.cnki.issn1003-3033.2010.08.012. [10] 朱传杰, 林柏泉, 江丙友, 等. 受限空间内爆燃波瞬态流速与超压的耦合关系 [J]. 燃烧科学与技术, 2012, 18(4): 326–330.ZHU C J, LIN B Q, JIANG B Y, et al. Coupled relationship between gas velocity and peak overpressure of deflagration wave in confined space [J]. Journal of Combustion Science and Technology, 2012, 18(4): 326–330. [11] 朱传杰, 林柏泉, 江丙友, 等. 瓦斯爆炸在封闭管道内冲击振荡特征的数值模拟 [J]. 振动与冲击, 2012, 31(16): 8–12, 17. DOI: 10.13465/j.cnki.jvs.2012.16.009.ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation on oscillation and shock of gas explosion in a closed end pipe [J]. Journal of Vibration and Shock, 2012, 31(16): 8–12, 17. DOI: 10.13465/j.cnki.jvs.2012.16.009. [12] 罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08. [13] 罗振敏, 毛文龙, 张娟, 等. 泄压点火不同端管道内甲烷爆炸特性数值模拟 [J]. 工业安全与环保, 2017, 43(11): 13–17, 29. DOI: 10.3969/j.issn.1001-425X.2017.11.004.LUO Z M, MAO W L, ZHANG J, et al. Numerical simulation of methane explosion characteristics in the vessel with decompression and ignition in different ends [J]. Industrial Safety and Environmental Protection, 2017, 43(11): 13–17, 29. DOI: 10.3969/j.issn.1001-425X.2017.11.004. [14] 董铭鑫, 赵东风, 尹法波, 等. 通风管网中瓦斯爆炸火焰波传播特性三维数值模拟 [J]. 煤炭学报, 2020, 45(S1): 291–299. DOI: 10.13225/j.cnki.jccs.2019.1173.DONG M X, ZHAO D F, YIN F B, et al. Flame propagation characteristics of gas explosion in 3d ventilation pipe network by numerical simulation [J]. Journal of China Coal Society, 2020, 45(S1): 291–299. DOI: 10.13225/j.cnki.jccs.2019.1173. [15] 王金贵, 胡超, 罗飞云, 等. 泄爆面积对甲烷-空气预混泄爆容器结构响应影响实验研究 [J]. 爆炸与冲击, 2022, 42(4): 045102. DOI: 10.11883/bzycj-2021-0327.WANG J G, HU C, LUO Y F, et al. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration [J]. Explosion and Shock Waves, 2022, 42(4): 045102. DOI: 10.11883/bzycj-2021-0327. [16] 陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418. [17] 罗振敏, 苏彬, 王涛, 等. 矿井瓦斯控爆技术及材料研究进展 [J]. 中国安全生产科学技术, 2019, 15(2): 17–24. DOI: 10.11731/j.issn.1673-193x.2019.02.003.LUO Z M, SU B, WANG T, et al. Research progress on explosion control technology and materials of mining gas [J]. Journal of Safety Science and Technology, 2019, 15(2): 17–24. DOI: 10.11731/j.issn.1673-193x.2019.02.003. [18] 温小萍, 余明高, 解茂昭, 等. 瓦斯爆燃火焰在狭缝中的动态传播及淬熄特性 [J]. 煤炭学报, 2013, 38(S2): 383–387. DOI: 10.13225/j.cnki.jccs.2013.s2.035.WEN X P, YU M G, XIE M Z, et al. Dynamic propagation and quenching characteristics of gas deflagrating flame in narrow channel [J]. Journal of China Coal Society, 2013, 38(S2): 383–387. DOI: 10.13225/j.cnki.jccs.2013.s2.035. [19] 丁圆圆, 郑志军, 王士龙, 等. 多孔材料吸能行为对相对密度和冲击速度的依赖性 [J]. 固体力学学报, 2018, 39(6): 578–586. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.030.DING Y Y, ZHENG Z J, WANG S L, et al. The dependence of energy absorption behavior of cellular materials on relative density and impact velocity [J]. Chinese Journal of Solid Mechanics, 2018, 39(6): 578–586. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.030. [20] 段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009. [21] DUAN Y L, LONG F Y, HUANG J, et al. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27237–27249. DOI: 10.1016/j.ijhydene.2022.06.065. [22] 程方明, 常助川, 史合, 等. 多孔障碍物对预混火焰传播的影响 [J]. 爆炸与冲击, 2020, 40(8): 082103. DOI: 10.11883/bzycj-2019-0480.CHENG F M, CHANG Z C, SHI H, et al. Multi-hole obstacles’ effects on premixed flame’s propagation [J]. Explosion and Shock Waves, 2020, 40(8): 082103. DOI: 10.11883/bzycj-2019-0480. [23] 程方明, 常助川, 高彤彤, 等. 不同位置多孔障碍物对预混火焰传播的影响 [J]. 中国安全科学学报, 2020, 30(11): 114–120. DOI: 10.16265/j.cnki.issn1003-3033.2020.11.017.CHENG F M, CHANG Z C, GAO T T, et al. Influence of multi-hole obstacles at different locations on premixed flame’s propagation [J]. China Safety Science Journal, 2020, 30(11): 114–120. DOI: 10.16265/j.cnki.issn1003-3033.2020.11.017. [24] 袁必和, 张玉铎, 员亚龙, 等. 多孔聚丙烯复合材料的抑爆性能研究 [J]. 中国安全科学学报, 2021, 31(8): 91–96. DOI: 10.16265/j.cnki.issn1003-3033.2021.08.013.YUAN B H, ZHANG Y D, YUN Y L, et al. Study on explosion suppression performance of porous polypropylene [J]. China Safety Science Journal, 2021, 31(8): 91–96. DOI: 10.16265/j.cnki.issn1003-3033.2021.08.013. [25] 周辉, 任辉启, 吴祥云, 等. 成层式防护结构中分散层研究综述 [J]. 爆炸与冲击, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.ZHOU H, REN H Q, WU X Y, et al. A review of sacrificial claddings in multilayer protective structure [J]. Explosion and Shock Waves, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280. [26] 陆明飞, 丛立新, 周军伟. 瓦斯爆燃火焰在波纹阻火器内淬熄特性分析 [J]. 煤炭学报, 2022, 47(4): 1579–1587. DOI: 10.13225/j.cnki.jccs.2021.1100.LU M F, CONG L X, ZHOU J W. Quenching characteristics of gas deflagration flame in crimped ribbon flame arrester [J]. Journal of China Coal Society, 2022, 47(4): 1579–1587. DOI: 10.13225/j.cnki.jccs.2021.1100. [27] 魏春荣, 徐敏强, 孙建华, 等. 多孔材料抑制瓦斯爆炸传播的实验及机理 [J]. 功能材料, 2012, 43(16): 2247–2250, 2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.WEI C R, XU M Q, SUN J H, et al. Experiment and mechanism of porous materials for suppressing the gas explosion [J]. Journal of Functional Materials, 2012, 43(16): 2247–2250, 2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031. [28] 程方明, 常助川, 史合, 等. 金属丝网对甲烷/空气预混火焰管道内传播的影响 [J]. 中国安全生产科学技术, 2020, 16(1): 135–140. DOI: 10.11731/j.issn.1673-193x.2020.01.022.CHENG F M, CHANG Z C, SHI H, et al. Influence of wire mesh on propagation of methane/air premixing flame in pipe [J]. Journal of Safety Science and Technology, 2020, 16(1): 135–140. DOI: 10.11731/j.issn.1673-193x.2020.01.022. [29] NIE B S, HU S T, YANG L L, et al. Characteristics of flame velocity of gas explosion with obstruction in pipeline [J]. Perspectives in Science, 2016, 7: 277–281. DOI: 10.1016/j.pisc.2015.12.003. [30] DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/J.JLP.2020.104370. [31] CETIN E, BAYKASOĞLU C. Energy absorption of thin-walled tubes enhanced by lattice structures [J]. International Journal of Mechanical Sciences, 2019, 157-158: 471–484. DOI: 10.1016/j.ijmecsci.2019.04.049. [32] SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast impact loading of metal-foam sandwich panels [J]. Procedia Engineering, 2017, 173: 495–502. DOI: 10.1016/j.proeng.2016.12.073. [33] 张保勇, 崔嘉瑞, 陶金, 等. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究 [J]. 爆炸与冲击, 2023, 43(2): 025402. DOI: 10.11883/bzycj-2021-0531.ZHANG B Y, CUI J R, TAO J, et al. Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation [J]. Explosion and Shock Waves, 2023, 43(2): 025402. DOI: 10.11883/bzycj-2021-0531. [34] 王磊, 司荣军, 苗磊, 等. 障碍物压力反射特性对瓦斯爆炸传播影响的数值模拟研究 [J]. 中国安全生产科学技术, 2020, 16(8): 106–112. DOI: 10.11731/j.issn.1673-193x.2020.08.017.WANG L, SI R J, MIAO L, et al. Numerical simulation research on influence of obstacle pressure reflection characteristics on gas explosion propagation [J]. Journal of Safety Science and Technology, 2020, 16(8): 106–112. DOI: 10.11731/j.issn.1673-193x.2020.08.017. [35] 刘庆刚, 魏青, 韩伟信, 等. 基于有限元法的V型缺口平板应力集中系数研究 [J]. 河北工业科技, 2019, 36(4): 240–245. DOI: 10.7535/hbgykj.2019yx04003.LIU Q G, WEI Q, HAN W X, et al. Study of the stress concentration factors of a V-notched plate by using finite element method [J]. Hebei Journal of Industrial Science and Technology, 2019, 36(4): 240–245. DOI: 10.7535/hbgykj.2019yx04003. 期刊类型引用(1)
1. 马龙泽,余永刚. 底部排气装置快速降压过程中燃烧流动特性数值分析. 兵工学报. 2019(03): 488-499 . 百度学术
其他类型引用(4)
-