基于圆筒试验的DNTF基叠层复合装药的爆轰驱动释能特性

沈飞 王辉 王金涛 余文力 王煊军

沈飞, 王辉, 王金涛, 余文力, 王煊军. 基于圆筒试验的DNTF基叠层复合装药的爆轰驱动释能特性[J]. 爆炸与冲击, 2023, 43(11): 112301. doi: 10.11883/bzycj-2023-0085
引用本文: 沈飞, 王辉, 王金涛, 余文力, 王煊军. 基于圆筒试验的DNTF基叠层复合装药的爆轰驱动释能特性[J]. 爆炸与冲击, 2023, 43(11): 112301. doi: 10.11883/bzycj-2023-0085
SHEN Fei, WANG Hui, WANG Jintao, YU Wenli, WANG Xuanjun. Detonation driving energy release characteristics of laminated composite charge of DNTF-based aluminized explosivesbased on cylinder tests[J]. Explosion And Shock Waves, 2023, 43(11): 112301. doi: 10.11883/bzycj-2023-0085
Citation: SHEN Fei, WANG Hui, WANG Jintao, YU Wenli, WANG Xuanjun. Detonation driving energy release characteristics of laminated composite charge of DNTF-based aluminized explosivesbased on cylinder tests[J]. Explosion And Shock Waves, 2023, 43(11): 112301. doi: 10.11883/bzycj-2023-0085

基于圆筒试验的DNTF基叠层复合装药的爆轰驱动释能特性

doi: 10.11883/bzycj-2023-0085
基金项目: 国家自然科学基金(12202349)
详细信息
    作者简介:

    沈 飞(1983- ),男,博士研究生,研究员,shenf02@163.com

    通讯作者:

    王煊军(1965- ),男,博士,教授,wangxj503@sina.com

  • 中图分类号: O389; TJ55

Detonation driving energy release characteristics of laminated composite charge of DNTF-based aluminized explosivesbased on cylinder tests

  • 摘要: 为探究叠层复合装药的爆轰释能规律,采用爆速差为1.85 km/s的3,4-二硝基呋咱基氧化呋咱(DNTF)基高爆速炸药与高爆热炸药制备成等厚度的叠层复合装药,通过狭缝扫描试验和圆筒试验分别获得了装药内的爆速变化和产物的膨胀释能曲线,并结合2种炸药爆轰产物的相互作用过程,分析了叠层复合装药与单一装药释能过程的主要差异。结果表明:爆轰波交替传播时,2种炸药均能迅速进入稳定爆轰状态;产物膨胀时,2种炸药的相互作用使装药爆轰驱动能量的分布特征发生显著变化,高爆速炸药的加载区域扩大,导致铜管速度降低,比动能较单一装药下降了6.7%,而高爆热炸药的加载区域缩小,铜管速度升高,比动能较单一装药提升了14.1%;此外,高爆热炸药爆轰产物处于压缩状态,有利于提升铝粉的反应速率,有望进一步增强叠层复合装药的驱动做功能力。
  • 图  1  爆轰波轨迹扫描试验布局示意图

    Figure  1.  Schematic diagram of scanning test of the trajectory of detonation wave

    图  2  爆轰波轨迹扫描图像

    Figure  2.  Scanning photograph of the detonation wave trajectory

    图  3  叠层复合装药的爆轰波轨迹曲线

    Figure  3.  Trajectory curve of detonation wave of laminated composite charge

    图  4  圆筒试验布局

    Figure  4.  Layout of the cylinder test

    图  5  圆筒试验测量结果

    Figure  5.  Result curves of the cylinder test

    图  6  铜管膨胀过程的分幅摄影照片

    Figure  6.  Fractional photography of copper tube expansion process

    图  7  不同装药结构中炸药爆轰产物的p-v曲线

    Figure  7.  p-v curves of detonation products of explosive in different charges

    图  8  两种炸药爆轰产物的v*-t曲线

    Figure  8.  v*-t curves of detonation products of two explosives

    图  9  两种炸药爆轰产物相互作用过程的示意图

    Figure  9.  Schematic diagram of the interaction process between detonation products of two explosives

    图  10  两种炸药爆轰产物的加载区域变化曲线

    Figure  10.  Variation curves of loading region of detonation products of two explosives

    表  1  $18\;{\text{μs}} $时铜管膨胀的测量值

    Table  1.   Measurement values when the copper tube has expanded at $18\;{\text{μs}} $

    装药类型 炸药名称 ue/(km·s–1) $ \Delta {r_{\text{e}}} $/mm E/(kJ·g–1)
    单一装药 DH 1.838 29.60 1.689
    DHUA 1.579 23.83 1.247
    复合装药 DH 1.775 28.36 1.575
    DHUA 1.687 26.25 1.423
    下载: 导出CSV
  • [1] 罗观, 李海波, 郑保辉, 等. 高活性金属在炸药中的应用思考 [J]. 含能材料, 2021, 29(10): 885–887. DOI: 10.11943/CJEM2021227.

    LUO G, LI H B, ZHENG B H, et al. Application of highly active metals in explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 885–887. DOI: 10.11943/CJEM2021227.
    [2] MAIZ L, TRZCIŃSKI W A, PASZULA J. Optical spectroscopy to study confined and semi-closed explosions of homogeneous and composite charges [J]. Optics and Lasers in Engineering, 2017, 88(1): 111–119. DOI: 10.1016/j.optlaseng.2016.08.006.
    [3] TRZCINSKI W A, BARCZ K. Investigation of blast wave characteristics for layered thermobaric charges [J]. Shock Waves, 2012, 22(2): 119–127. DOI: 10.1007/s00193-012-0357-z.
    [4] HONG X W, LI W B, LI W B, et al. Experimental study on explosion dispersion process of a multi-layer composite charge under different initiation modes [J]. Defence Technology, 2020, 16(4): 883–892. DOI: 10.1016/j.dt.2019.11.002.
    [5] 李梅, 蒋建伟, 王昕. 复合装药空气中爆炸冲击波传播特性 [J]. 爆炸与冲击, 2018, 38(2): 367–372. DOI: 10.11883/bzycj-2016-0209.

    LI M, JIANG J W, WANG X. Shock wave propagation characteristics of double layer charge explosion in the air [J]. Explosion and Shock Waves, 2018, 38(2): 367–372. DOI: 10.11883/bzycj-2016-0209.
    [6] 沈飞, 王辉, 罗一鸣. 一种同轴双元组合装药的爆轰波形及驱动性能 [J]. 火炸药学报, 2018, 41(6): 588–593. DOI: 10.14077/j.issn.1007-7812.2018.06.010.

    SHEN F, WANG H, LUO Y M. Detonation waveform and driving performance of a kind of coaxial binary composite charge [J]. Chinese Journal of Explosives and Propellants, 2018, 41(6): 588–593. DOI: 10.14077/j.issn.1007-7812.2018.06.010.
    [7] 沈飞, 罗一鸣, 余文力, 等. 典型同轴双元装药爆轰波传播特性试验研究 [J]. 火炸药学报, 2022, 45(3): 412–418. DOI: 10.14077/j.issn.1007-7812.202202002.

    SHEN F, LUO Y M, YU W L, et al. Experimental study on propagation characteristics of detonation wave of typical coaxial binary charge [J]. Chinese Journal of Explosives and Propellants, 2022, 45(3): 412–418. DOI: 10.14077/j.issn.1007-7812.202202002.
    [8] HANDLEY C A, LAMBOURN B D, WHITWORTH N J, et al. Understanding the shock and detonation response of high explosives at the continuum and meso scales [J]. Applied Physics Reviews, 2018, 5(1): 011303. DOI: 10.1063/1.5005997.
    [9] 向梅, 黄毅民, 饶国宁, 等. 不同升温速率下复合药柱烤燃实验与数值模拟研究 [J]. 爆炸与冲击, 2013, 33(4): 394–400. DOI: 10.11883/1001-1455(2013)04-0394-07.

    XIANG M, HUAMG Y M, RAO G N, et al. Cook-off test and numerical simulation for composite charge at different heating rates [J]. Explosion and Shock Waves, 2013, 33(4): 394–400. DOI: 10.11883/1001-1455(2013)04-0394-07.
    [10] 李兴隆, 吴奎先, 路中华, 等. 叠层复合装药殉爆安全性试验及数值模拟 [J]. 含能材料, 2022, 30(3): 204–213. DOI: 10.11943/CJEM2021014.

    LI X L, WU K X, LU Z H, et al. Sympathetic detonation test and simulation of laminated composite charge [J]. Chinese Journal of Energetic Materials, 2022, 30(3): 204–213. DOI: 10.11943/CJEM2021014.
    [11] 黄瑨, 王军, 毛耀峰, 等. TATB/CL-20复合装药结构的3D打印成型技术 [J]. 含能材料, 2019, 27(11): 931–935. DOI: 10.11943/CJEM2019042.

    HUANG J, WANG J, MAO Y F, et al. Preparation of CL-20/TATB composite charge structure by 3D printing technology [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 885–887. DOI: 10.11943/CJEM2019042.
    [12] 炸药圆筒试验光学扫描和激光干涉联合测试方法: GJB 8381—2015 [S]. 2015.
    [13] BAUST T M. Improving the design and evaluation of PDV-based cylinder test experiments for JWL-parameter determination [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(9): 1344–1356. DOI: 10.1002/prep.202000002.
    [14] 王辉, 沈飞. 金属柱壳约束对非理想炸药驱动效率的影响 [J]. 火炸药学报, 2017, 40(3): 93–97. DOI: 10.14077/j.issn.1007-7812.2017.03.018.

    WANG H, SHEN F. Influence of cylindrical metal shell constraint on the driving efficiency of non-ideal explosives [J]. Chinese Journal of Explosives and Propellants, 2017, 40(3): 93–97. DOI: 10.14077/j.issn.1007-7812.2017.03.018.
    [15] HUTCHINSON M D. The effects of yield stress and casing thickness on blast impulse and fragment velocity [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(5): 733–738. DOI: 10.1002/prep.201400058.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  76
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-08-08
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回