Dynamic response of flowing ice colliding with a sluice pier under hydrodynamic action
-
摘要: 高寒地区河冰撞击河道的闸墩结构会产生极端冰载荷和冰激振动,水的动力效应使得碰撞过程更加复杂。采用任意拉格朗日-欧拉流固耦合方法,考虑作用在流冰和闸墩表面的流体力,建立了水-冰-闸墩耦合模型,探究了偶然极端条件下冰-闸墩碰撞的力学特性,设计了冰-砼碰撞实验。结果表明:冰-砼碰撞实验中,撞击力的模拟结果与实验结果吻合良好;对流固耦合的水动力效应分析发现,水-冰-闸墩耦合模型能够体现水的流体特性,在流冰撞击闸墩近场逼近过程中,初始时刻水的动力效应能够增加流冰的动能,撞击楔入闸墩过程中,水介质形成一个瞬态高压力场,产生水垫效应吸收冰体部分动能,从而抑制流冰运动;在不同流冰体积和压缩强度工况下,闸墩结构所承受的冰力随着流冰体积的增大而增大,流冰压缩强度对冰力的影响较小,流冰损伤与闸墩结构响应主要集中在碰撞接触区,流冰撞击闸墩结构引起冰激振动,流冰体积对闸墩振动加速度的影响较大,相同体积的流冰随着压缩强度的增大,振动幅值差异不明显,表明流冰体积是影响冰-闸墩碰撞的关键参数。Abstract: In frigid regions, the construction of sluice pier structures within river systems is confronted with considerable challenges arising from the presence of severe ice loads and ice-induced vibrations. The collision process between ice and sluice piers is further complicated due to the intricate hydrodynamic effects exerted by water. The arbitrary Lagrangian-Eulerian (ALE) fluid-structure interaction (FSI) method is employed in this research to meticulously account for the fluid forces acting upon both the ice and sluice pier surfaces. A comprehensive coupled model encompassing the interactions among water, ice, and sluice piers is established to thoroughly investigate the mechanical characteristics associated with ice-sluice pier collisions under highly unpredictable conditions. Corresponding ice-concrete collision tests are meticulously designed and conducted, revealing an exemplary concurrence between the simulated impact forces and the values obtained from experimental observations. Upon analyzing the fluid-structure interaction and hydrodynamic effects, the present study demonstrates that the water-ice-sluice pier coupled model adeptly captures the fluid characteristics inherent to water. During the approach of an ice mass towards a sluice pier, the initial hydrodynamic effects initiated by the water medium effectively augment the kinetic energy possessed by the ice. As the ice forcefully interacts with the sluice pier, the water medium swiftly generates a transient high-pressure field, thereby establishing a phenomenon colloquially referred to as the water cushion effect. This effect is manifested by absorbing a portion of the ice’s kinetic energy, effectively dampening its movement. Distinctive scenarios characterized by varying ice volumes and compression strengths elucidate that the ice forces exerted upon the sluice pier structure directly correlate with the magnitude of the ice volume, while the influence of ice compression strength on said forces is relatively negligible. The consequential damages inflicted upon the ice and the response exhibited by the sluice pier structure primarily manifest within the contact area at the moment of collision. Consequently, the collisions between ice and the sluice pier structure induce vibrations that are uniquely attributed to ice-related factors. The volume of ice significantly influences the acceleration of sluice pier vibrations. Furthermore, under the condition of maintaining a consistent ice volumes, an increase in compression strength yields only marginal discrepancies in vibration amplitude. This finding convincingly substantiates the critical role played by ice volume as the paramount parameter governing ice-sluice pier collisions.
-
Key words:
- fluid-structure interaction /
- hydrodynamic /
- sluice pier /
- collision forces /
- ice-induced vibration
-
混凝土材料参数 密度/(kg·m–3) 弹性模量/GPa 泊松比 初始抗拉极限/MPa 抗剪极限/MPa 断裂韧度/(N·m–1) 剪切保持力 2 500 30 0.2 4.02 21 0.14 0.03 混凝土材料参数 钢筋材料参数 体积黏度 压屈应力/MPa 弹性模量/GPa 屈服应力/MPa 硬化模量/GPa 失效应变 0.72 42 200 335 10 0.75 表 2 冰材料模型参数
Table 2. Material parameters of ice
密度/(kg·m–3) 剪切模量/GPa 屈服应力/MPa 塑性硬化模量/GPa 体积模量/GPa 失效应变 截断应力/MPa 910 2.2 2.1 4.26 5.26 7.69×10–4 –4.0 表 3 水和空气介质材料参数
Table 3. Material parameters of water and air media
流体介质 密度/(kg·m–3) 截断压力/Pa 黏度系数/(N·s·m–2) C0 C1 C2 C3 C4 C5 E0/MPa V0 空气 1.184 5 –10 1.844×10−5 0 0 0 0 0.4 0.4 0.253 1.0 水 998.21 –1.0×10−5 1.790×10−3 1.0133×105 2.25×109 1.0 表 4 流冰-闸墩碰撞工况
Table 4. Flowing ice -pier collision conditions
工况 冰厚/m 冰温/℃ 冰速/(m·s–1) 冰体积/m3 冰压缩强度/MPa 1 0.3 –8 1.5 7.2 2.186 2 0.3 –8 1.5 14.4 2.186 3 0.3 –8 1.5 28.8 2.186 4 0.3 –8 1.5 64.8 2.186 5 0.3 –8 1.5 115.2 2.186 6 0.3 –2 1.5 64.8 1.123 7 0.3 –5 1.5 64.8 1.825 8 0.3 –8 1.5 64.8 2.186 9 0.3 –14 1.5 64.8 2.615 10 0.3 –20 1.5 64.8 2.889 -
[1] YANG X, PAVELSKY T M, ALLEN G H. The past and future of global river ice [J]. Nature, 2020, 577: 69–73. DOI: 10.1038/s41586-019-1848-1. [2] ROKAYA P, BUDHATHOKI S, LINDENSCHMIDT K E. Trends in the timing and magnitude of ice-jam floods in Canada [J]. Scientific Reports, 2018, 8(1): 5834. DOI: 10.1038/s41598-018-24057-z. [3] 郭新蕾, 王涛, 付辉, 等. 河渠冰水力学研究进展和趋势 [J]. 力学学报, 2021, 53(3): 655–671. DOI: 10.6052/0459-1879-20-407.GUO X L, WANG T, FU H, et al. Progress and trend in the study of river ice hydraulics [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 655–671. DOI: 10.6052/0459-1879-20-407. [4] 贡力, 杨腾腾, 靳春玲, 等. 水-空气耦合介质中冰载荷对闸墩的撞击影响研究 [J/OL]. 工程力学, (2023-04-03)[2022-11-28]. DOI: 10.6052/j.issn.1000-4750.2022.05.0491.GONG L, YANG T T, JIN C L, et al. Research on collision of ice loads on the sluice pier in water-air coupling medium [J/OL]. Engineering Mechanics, (2023-04-03)[2022-11-28]. DOI: 10.6052/j.issn.1000-4750.2022.05.0491. [5] WU C G, WEI Y M, JIN J L, et al. Comprehensive evaluation of ice disaster risk of the Ningxia-Inner Mongolia reach in the upper Yellow River [J]. Natural Hazards, 2015, 75(2): 179–197. DOI: 10.1007/s11069-014-1308-z. [6] 杨开林. 长距离输水水力控制的研究进展与前沿科学问题 [J]. 水利学报, 2016, 47(3): 424–435. DOI: 10.13243/j.cnki.slxb.20150824.YANG K L. Review and frontier scientific issues of hydraulic control for long distance water diversion [J]. Journal of Hydraulic Engineering, 2016, 47(3): 424–435. DOI: 10.13243/j.cnki.slxb.20150824. [7] 王娟, 黄樾, 邓宇, 等. 基于数字图像相关方法的黄河冰断裂性能研究 [J]. 水利学报, 2021, 52(9): 1036–1046. DOI: 10.13243/j.cnki.slxb.20201064.WANG J, HUANG Y, DENG Y, et al. Research on ice fracture of the Yellow River performance based on digital image correlation method [J]. Journal of Hydraulic Engineering, 2021, 52(9): 1036–1046. DOI: 10.13243/j.cnki.slxb.20201064. [8] WANG Z, SHI H B, LIU X M, et al. Analysis on the ice regime change characteristics in the Inner Mongolia reach of the Yellow River from 1950 to 2010 [J]. Journal of Coastal Research, 2020, 115(S1): 405. DOI: 10.2112/JCR-SI115-115.1. [9] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010–2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113. [10] JEON S, KIM Y. Numerical simulation of level ice-structure interaction using damage-based erosion model [J]. Ocean Engineering, 2021, 220: 108485. DOI: 10.1016/j.oceaneng.2020.108485. [11] CAI W, ZHU L, YU T X, et al. Numerical simulations for plates under ice impact based on a concrete constitutive ice model [J]. International Journal of Impact Engineering, 2020, 143: 103594. DOI: 10.1016/j.ijimpeng.2020.103594. [12] GONG L, DONG Z Q, JIN C L, et al. Flow-solid coupling analysis of ice-concrete collision nonlinear problems in the Yellow River Basin [J]. Water, 2023, 15(4): 643. DOI: 10.3390/w15040643. [13] ZHOU L, ZONG Z, LI J N. A numerical study of hydrodynamic influence on collision of brash ice with a structural plate [J]. Journal of Hydrodyn, 2022, 34: 43–51. DOI: 10.1007/s42241-022-0004-9. [14] YU Z L, AMDAHL J. A numerical solver for coupled dynamic simulation of glacial ice impacts considering hydrodynamic-ice-structure interaction [J]. Ocean Engineering, 2021, 226: 108827. DOI: 10.1016/j.oceaneng.2021.108827. [15] KIM J H, KIM Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields [J]. Marine Structures, 2019, 66: 83–105. DOI: 10.1016/j.marstruc.2019.03.002. [16] 王帅霖, 刘社文, 季顺迎. 基于GPU并行的锥体导管架平台结构冰激振动DEM-FEM耦合分析 [J]. 工程力学, 2019, 36(10): 28–39. DOI: 10.6052/j.issn.1000-4750.2018.10.0560.WANG S L, LIU S W, JI S Y. Coupled discrete-finite element analysis for ice-induced vibration of conical jacket platform based on GPU-BASED parallel algorithm [J]. Engineering Mechanics, 2019, 36(10): 28–39. DOI: 10.6052/j.issn.1000-4750.2018.10.0560. [17] 蒋文灿, 程祥珍, 梁斌, 等. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.JIANG W C, CHENG X Z, LIANG B, et al. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner [J]. Explosion and Shock Waves, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389. [18] ERCEG S, ERCEG B, VON BOCK UND POLACH F, et al. A simulation approach for local ice loads on ship structures in level ice [J]. Marine Structures, 2022, 81: 103117. DOI: 10.1016/j.marstruc.2021.103117. [19] LSTC. LS-DYNA keyword user’s manual [M]. CA: Livermore Software Technology Corporation (LSTC), 2014. [20] CHIQUITO. M, CASTEDO. R, SANTOS. A. P, et al. Numerical modelling and experimental validation of the behaviour of brick masonry walls subjected to blast loading [J]. International Journal of Impact Engineering, 2021, 148: 103760. DOI: 10.1016/j. ijimpeng. DOI: 10.1016/j.ijimpeng. [21] 崔堃鹏. 汽车撞击荷载及其作用下高速列车与桥梁系统动力响应与列车运行安全研究 [D]. 北京: 北京交通大学, 2015.CUI K P. Research of motor collision loads and dynamic responses of highspeed train-bridge system and running safety evaluation of trains subjected to motor collision loads [D]. Beijing: Beijing Jiaotong University, 2015. [22] DENG Y, LI C J, LI Z J, et al. Dynamic and full-time acquisition technology and method of ice data of Yellow River [J]. Sensors, 2021, 22(1): 176. DOI: 10.3390/s22010176. [23] SONG M, MA J, HUANG Y. Fluid-structure interaction analysis of ship-ship collisions [J]. Marine Structures, 2017, 55: 121–136. DOI: 10.1016/j.marstruc.2017.05.006. [24] YE X D, FAN W, SHA Y Y, et al. Fluid-structure interaction analysis of oblique ship-bridge collisions [J]. Engineering Structures, 2023, 274: 115129. DOI: 10.1016/j.engstruct.2022.115129. [25] INCE S T, KUMAR A, PAIK J K. A new constitutive equation on ice materials [J]. Ships and Offshore Structures, 2017, 12(5): 610–623. DOI: 10.1080/17445302.2016.1190122. [26] 王庆凯, 张宝森, 邓宇, 等. 黄河冰单轴压缩强度的试验与影响因素探究 [J]. 水利水电技术, 2016, 47(9): 90–94. DOI: 10.13928/j.cnki.wrahe.2016.09.018.WANG Q K, ZHANG B S, DENG Y, et al. Study on test of uniaxial compressive strength of ice in Yellow River and its influencing factors [J]. Water Resources and Hydropower Engineering, 2016, 47(9): 90–94. DOI: 10.13928/j.cnki.wrahe.2016.09.018. [27] 张健, 王甫超, 刘海冬, 等. 水介质对船冰碰撞结构响应的影响 [J]. 船舶工程, 2019, 41(7): 12–15, 22. DOI: 10.13788/j.cnki.cbgc.2019.07.03.ZHANG J, WANG F C, LIU H D, et al. The influence of water medium on the structure response of ship ice collision [J]. Ship Engineering, 2019, 41(7): 12–15, 22. DOI: 10.13788/j.cnki.cbgc.2019.07.03. [28] 王鸿, 贡力, 王忠慧, 等. 基于不同碰撞模型的流冰-输水隧洞碰撞动态响应研究 [J]. 水资源与水工程学报, 2021, 32(1): 164–171. DOI: 10.11705/j.issn.1672-643X.2021.01.24.WANG H, GONG L, WANG Z H, et al. Dynamic response of drift ice-water tunnel collision based on different collision models [J]. Journal of Water Resources and Water Engineering, 2021, 32(1): 164–171. DOI: 10.11705/j.issn.1672-643X.2021.01.24. [29] SONG M, KIM E, AMDAHL J, et al. A comparative analysis of the fluid-structure interaction method and the constant added mass method for ice-structure collisions [J]. Marine Structures, 2016, 49: 58–75. DOI: 10.1016/j.marstruc.2016.05.005. [30] LIU Y Z, SHI W, WANG W H, et al. Dynamic analysis of monopile-type offshore wind turbine under sea ice coupling with fluid-structure interaction [J]. Frontiers in Marine Science, 2022, 9: 12. DOI: 10.3389/fmars.2022.839897.