特定热层温度下入射角对前驱波特性的影响

李琦 程帅 刘文祥 金龙 童念雪 张德志

李琦, 程帅, 刘文祥, 金龙, 童念雪, 张德志. 特定热层温度下入射角对前驱波特性的影响[J]. 爆炸与冲击, 2024, 44(7): 073202. doi: 10.11883/bzycj-2023-0114
引用本文: 李琦, 程帅, 刘文祥, 金龙, 童念雪, 张德志. 特定热层温度下入射角对前驱波特性的影响[J]. 爆炸与冲击, 2024, 44(7): 073202. doi: 10.11883/bzycj-2023-0114
LI Qi, CHENG Shuai, LIU Wenxiang, JIN Long, TONG Nianxue, ZHANG Dezhi. Influence of incident angle on precursor wave characteristics at specific thermal-layer temperature[J]. Explosion And Shock Waves, 2024, 44(7): 073202. doi: 10.11883/bzycj-2023-0114
Citation: LI Qi, CHENG Shuai, LIU Wenxiang, JIN Long, TONG Nianxue, ZHANG Dezhi. Influence of incident angle on precursor wave characteristics at specific thermal-layer temperature[J]. Explosion And Shock Waves, 2024, 44(7): 073202. doi: 10.11883/bzycj-2023-0114

特定热层温度下入射角对前驱波特性的影响

doi: 10.11883/bzycj-2023-0114
详细信息
    作者简介:

    李 琦(1997- ),男,学士,助理工程师,liqi@nint.ac.cn

    通讯作者:

    张德志(1973- ),男,博士,研究员,zhangdezhi@nint.ac.cn

  • 中图分类号: O383.3

Influence of incident angle on precursor wave characteristics at specific thermal-layer temperature

  • 摘要: 空中强爆炸会释放热辐射使地表形成热层,冲击波进入热层后传播速度加快,形成前驱波。冲击波入射角是影响前驱波特性的重要因素,但目前相关工作大多依赖理论推导,实验研究较少。利用爆炸波模拟激波管平台,开展了热层温度为300 ℃时入射角对前驱波形成影响的研究实验,结合实验构型建立了数值仿真模型,并将实验、数值仿真结果与已有理论结果进行了对比。结果表明:实验获得的前驱波形成临界角范围与理论计算结果一致;入射角越大,前驱波超过马赫杆的距离越大,到时提前越多;前驱波会导致超压峰值减小,且随着入射角的增大,超压峰值减小程度先增大后减小;整体上看,前驱波动压峰值随入射角的增大而增大,当入射角达到一定阈值后,动压峰值增大程度开始在一定范围内波动,这是由气流密度和粒子速度的峰值到时不同所导致的;动压冲量的增大程度随入射角的增大逐渐增大。
  • 图  1  实验设计

    Figure  1.  Experimental design

    图  2  实验现场

    Figure  2.  Experimental site

    图  3  纹影图像

    Figure  3.  Schlieren image

    图  4  不同入射角度、有无热层实验纹影图像对比

    Figure  4.  Comparison of experimental schlieren images with thermal layer with ones without thermal layer at different incident angles

    图  5  前驱波超前马赫杆的距离示意图

    Figure  5.  Diagram of the distance of the precursor wave leading the Mach stem

    图  6  在完整二维轴对称模型中截取部分模型

    Figure  6.  Interception of the partial model from a complete two-dimensional axisymmetrical model

    图  7  部分模型中添加斜面及高温热层

    Figure  7.  Addition of inclined plane and high-temperature thermal layer in the partial model

    图  8  入射波超压和动压随时间的演化

    Figure  8.  Evolution of incident overpressure and dynamic pressure with time

    图  9  有无热层时压力云图数值仿真结果

    Figure  9.  Numerically-simulated pressure clouds with and without thermal layer

    图  10  入射角对冲击波到时及其提前程度的影响

    Figure  10.  Influences of incident angle of shock wave on arrival time and its advance degree

    图  11  入射角对超压峰值及其减小程度的影响

    Figure  11.  Influence of incident angle of shock wave on peak overpressure and its decreasing degree

    图  12  入射角对动压峰值及其增大程度的影响

    Figure  12.  Influence of incident angle of shock wave on peak dynamic pressure and its increase degree

    图  13  入射角为60°时测点的粒子速度和气流密度随时间的演化

    Figure  13.  Evolutions of particle velocity and airflow density with time at the measured point when the incident angle of shock wave is 60°

    图  14  入射角对动压冲量及其增大程度的影响

    Figure  14.  Influences of incident angle of shock wave on dynamic pressure impulse and its increase degree

    表  1  实验条件

    Table  1.   Experimental conditions

    实验
    编号
    入射冲击波
    压力/kPa
    入射角
    β/(°)
    温度/
    有无
    热层
    1-1507515
    1-2300
    2-1506015
    2-2300
    3-1504515
    3-2300
    4-1503015
    4-2300
    下载: 导出CSV

    表  2  不同入射角时前驱波、马赫波波速及波速差

    Table  2.   Precursor and Mach wave velocities as well as their differences at different incident angles

    β/(°)vp/(m∙s−1)vM/(m∙s−1)Δv/(m∙s−1)
    75493.36447.5345.83
    60500.77478.9821.79
    下载: 导出CSV
  • [1] GLASSTONE S, DOLAN P J. The effects of nuclear weapons: TID-28061 [R]. 3rd ed. Washington: Department of Defense, 1977.
    [2] ARTEM’EV V I, BERGEL’SON V I, MEDVEDYUK S A, et al. Amplification of intense blast pressure in a medium with this rarefied channels [J]. Fluid Dynamics, 1996, 31(1): 121–126. DOI: 10.1007/BF02230756.
    [3] ETHRIDGE N H, KEEFER J H, CREPEAU J E, et al. Real surface (non-ideal) effects on nuclear explosion airblast from PRISCILLA-type events, part 1: comparison and evaluation of ideal and non-ideal airblast from priscilla computations; and part 2: sharc hydrocode calculations of the priscilla event (phase 1). Final report, 12 March 1992-30 May 1995: AD-A-302079/9/XAB [R]. Aberdeen: Applied Research Associates, Inc. , 1995.
    [4] FRY M A, KAMATH P, BOOK D L. Priscilla calculations and comparison with data: AD-A155 666 [R]. Washington: Naval Research Laborarory, 1985.
    [5] SWIFT L M, SACHS D C, KRIEBEL A R. Air-blast phenomena in the high-pressure region: WT-1403 [R]. Menlo Park, California: Stanford Research Institute, 1960.
    [6] BRYANT E J , ALLEN F. Dynamic pressure impulse for near ideal and non-ideal blast waves: DNA-82-C-0287 [R]. Alexandria, VA: Defense Nuclear Agency, 1983.
    [7] NEEDHAM C E. Blast waves [M]. Berlin, Heidelberg: Springer, 2010.
    [8] ZASLAVSKII B I, MOROZKIN S Y, PROKOF’EV A A, et al. Flow of a planar shock wave around a thermal layer at a rigid wall [J]. Journal of Applied Mechanics and Technical Physics, 1990, 31(3): 354–361. DOI: 10.1007/BF00864563.
    [9] 乔登江. 核爆炸物理概论 [M]. 北京: 国防工业出版社, 2003.
    [10] 贾雷明, 田宙. 平面冲击波与热层作用数值研究 [J]. 现代应用物理, 2015, 6(4): 305–311. DOI: 10.3969/j.issn.2095-6223.2015.04.013.

    JIA L M, TIAN Z. Numerical simulation of the interactions between planar shocks and thermal layer [J]. Modern Applied Physics, 2015, 6(4): 305–311. DOI: 10.3969/j.issn.2095-6223.2015.04.013.
    [11] GRIFFITH W C. Interaction of a shock wave with a thermal boundary layer [J]. Journal of the Aeronautical Sciences, 1956, 23(1): 16–22. DOI: 10.2514/8.3495.
    [12] GION E J. Plane shock interacting with thermal layer [J]. Physics of Fluids, 1977, 20(4): 700–702. DOI: 10.1063/1.861928.
    [13] BEN-DOR G. Shock wave reflection phenomena [M]. 2nd ed. Berlin: Springer, 2007. DOI: 10.1007/978-3-540-71382-1.
    [14] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
    [15] NEEDHAM C E, EKLER R G, KENNEDY L W. Extended desert calculation results with comparisons to PRISCILLA experimental data and a near-ideal calculation: ARL-CR-235 [R]. Albuquerque: S-Cubed, 1995.
    [16] EKLER R G, NEEDHAM C E, KENNEDY L W. Extended grassland calculation results with comparisons to PRISCILLA experimental data and a near-ideal calculation: AD-A-298081/1/XAB [R]. Albuquerque: S-Cubed, 1995.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  29
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回