Kevlar29纱线动态拉伸力学性能与本构方程

周玄 徐立志 任文科 高光发

周玄, 徐立志, 任文科, 高光发. Kevlar29纱线动态拉伸力学性能与本构方程[J]. 爆炸与冲击, 2024, 44(1): 013101. doi: 10.11883/bzycj-2023-0119
引用本文: 周玄, 徐立志, 任文科, 高光发. Kevlar29纱线动态拉伸力学性能与本构方程[J]. 爆炸与冲击, 2024, 44(1): 013101. doi: 10.11883/bzycj-2023-0119
ZHOU Xuan, XU Lizhi, REN Wenke, GAO Guangfa. Dynamic tensile mechanical properties and constitutive equation of Kevlar29 yarn[J]. Explosion And Shock Waves, 2024, 44(1): 013101. doi: 10.11883/bzycj-2023-0119
Citation: ZHOU Xuan, XU Lizhi, REN Wenke, GAO Guangfa. Dynamic tensile mechanical properties and constitutive equation of Kevlar29 yarn[J]. Explosion And Shock Waves, 2024, 44(1): 013101. doi: 10.11883/bzycj-2023-0119

Kevlar29纱线动态拉伸力学性能与本构方程

doi: 10.11883/bzycj-2023-0119
基金项目: 国家自然科学基金(12172179,11772160,11472008,12202207);国防科技创新特区项目;中国博士后科学基金(2022M711623);江苏省自然科学基金青年基金(BK20220968);冲击与安全工程教育部重点实验室(宁波大学)开放基金(CJ202201);工程材料与结构冲击振动四川省重点实验室开放基金(22kfgk03);江苏省研究生科研与实践创新计划项目(KYCX22_0475)
详细信息
    作者简介:

    周 玄(1999- ),男,博士研究生,zhoux@njust.edu.cn

    通讯作者:

    高光发(1980- ),男,博士,教授,博士生导师,gfgao@ustc.edu.cn

  • 中图分类号: O341

Dynamic tensile mechanical properties and constitutive equation of Kevlar29 yarn

  • 摘要: 为了能够清晰地表征芳纶纱线在不同应变率下的力学行为,进行了Kevlar29纱线的准静态和动态拉伸试验,结合分离式霍普金森拉杆理论和运动目标追踪法,获得了Kevlar29纱线在不同应变率下的应力-应变曲线,分析了纱线动态拉伸的变形与断裂过程,揭示了Kevlar29纱线力学性能的应变率效应;通过最小二乘法拟合得到了基于纱线应变率效应的黏弹性本构方程,分析了三元件和五元件本构模型的差异及适用性。结果表明:随着应变率升高,Kevlar29纱线的断裂应变减小,拉伸强度和韧性先增大后减小,拉伸模量先增大后趋于稳定;五元件黏弹性本构模型能够较好地表征纱线力学性能的应变率效应。
  • 图  1  Kevlar29纱线的多级结构

    Figure  1.  Multi-level structure of Kevlar29 yarn

    图  2  纱线夹持装置

    Figure  2.  Yarn gripping device

    图  3  纱线拉伸过程中夹持部位标记点观测

    Figure  3.  Observation of marked points at the clamping location during yarn stretching process

    图  4  准静态拉伸试验

    Figure  4.  Quasi-static tensile test

    图  5  SHTB装置示意图

    Figure  5.  Schematic diagram of SHTB apparatus

    图  6  SHTB的典型波形

    Figure  6.  Typical waveforms of SHTB

    图  7  杆端应变信号

    Figure  7.  Strain signals at the bar ends

    图  8  纱线的准静态应力-应变曲线

    Figure  8.  Quasi-static stress-strain curves of yarn

    图  9  应变-时间散点图

    Figure  9.  Strain-time scatter plot

    图  10  应变-时间曲线

    Figure  10.  Strain-time curves

    图  11  不同应变率下的应力-应变曲线

    Figure  11.  Stress-strain curves at different strain rates

    图  12  去除初始非线性段的应力-应变曲线

    Figure  12.  Stress-strain curves after removing initial nonlinear section

    图  13  两种方法的计算结果对比

    Figure  13.  Comparison of results obtained by two methods

    图  14  应变率为279 s−1时纱线的拉伸过程

    Figure  14.  Stretching process of the yarn when the strain rate is 279 s−1

    图  15  应变率为279 s−1时纱线的应力-应变曲线

    Figure  15.  Stress-strain curve of the yarn when the strain rate is 279 s−1

    图  16  纱线在不同应变率下的拉伸强度

    Figure  16.  Tensile strengths of yarn under different strain rates

    图  17  纱线在不同应变率下的断裂应变

    Figure  17.  Failure strains of yarn under different strain rates

    图  18  纱线在不同应变率下的拉伸模量

    Figure  18.  Tensile modules of yarn under different strain rates

    图  19  纱线在不同应变率下的韧性

    Figure  19.  Toughnesses of yarn under different strain rates

    图  20  黏弹性本构模型

    Figure  20.  viscoelastic constitutive model

    图  21  黏弹性本构模型的理论值与试验值对比

    Figure  21.  Comparison between the theoretical values of viscoelastic constitutive models and experimental results

    图  22  三元件模型与五元件模型对比

    Figure  22.  Comparison between three-element model and five-element model

    表  1  三元件黏弹性本构模型参数

    Table  1.   Parameters for the three-element viscoelastic model

    E1/GPa E2/GPa η2/(MPa·s)
    82.5 54.7 2.218
    下载: 导出CSV

    表  2  五元件黏弹性本构模型参数

    Table  2.   Parameters for the five-element viscoelastic model

    E1/GPa E2/GPa E3/GPa η2/(MPa·s) η3/(MPa·s) C1
    82.5 43.7 42.3 1.326 0.989 1416
    下载: 导出CSV
  • [1] WANG H X, HAZELL P J, SHANKAR K, et al. Tensile properties of ultra-high-molecular-weight polyethylene single yarns at different strain rates [J]. Journal of Composite Materials, 2020, 54(11): 1453–1466. DOI: 10.1177/0021998319883416.
    [2] WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251–1257. DOI: 10.1016/S1359-835X(99)00035-4.
    [3] RUSSELL B P, KARTHIKEYAN K, DESHPANDE V S, et al. The high strain rate response of ultra high molecular-weight polyethylene: from fibre to laminate [J]. International Journal of Impact Engineering, 2013, 60: 1–9. DOI: 10.1016/j.ijimpeng.2013.03.010.
    [4] ZHOU Y X, WANG Y, XIA Y M, et al. Tensile behavior of carbon fiber bundles at different strain rates [J]. Materials Letters, 2010, 64(3): 246–248. DOI: 10.1016/j.matlet.2009.10.045.
    [5] DOORAKI B F, NEMES J A, BOLDUC M. Study of parameters affecting the strength of yarns [J]. Journal de Physique Ⅳ (Proceedings), 2006, 134: 1183–1188. DOI: 10.1051/jp4:2006134180.
    [6] ZHU D, MOBASHER B, ERNI J, et al. Strain rate and gage length effects on tensile behavior of Kevlar 49 single yarn [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2021–2029. DOI: 10.1016/j.compositesa.2012.06.007.
    [7] 陈思颖, 黄晨光, 段祝平. 几种高性能纤维束的冲击动力学性能实验研究 [J]. 爆炸与冲击, 2003, 23(4): 355–359.

    CHEN S Y, HUANG C G, DUAN Z P. Experimental study on the dynamic properties of high strength fiber clusters [J]. Explosion and Shock Waves, 2003, 23(4): 355–359.
    [8] 朱德举, 欧云福, 张晓彤, 等. Kevlar® 29纤维多尺度力学行为的试验研究和有限元模拟 [J]. 工程力学, 2016, 33(9): 242–249, 256. DOI: 10.6052/j.issn.1000-4750.2015.02.0123.

    ZHU D J, OU Y F, ZHANG X T, et al. Experimental study and finite element modeling of the multi-scale mechanical behavior of Kevlar® 29 fibers [J]. Engineering Mechanics, 2016, 33(9): 242–249, 256. DOI: 10.6052/j.issn.1000-4750.2015.02.0123.
    [9] TAPIE E, SHIM V P W, GUO Y B. Influence of weaving on the mechanical response of aramid yarns subjected to high-speed loading [J]. International Journal of Impact Engineering, 2015, 80: 1–12. DOI: 10.1016/j.ijimpeng.2014.12.010.
    [10] NILAKANTAN G, KEEFE M, BOGETTI T A, et al. Multiscale modeling of the impact of textile fabrics based on hybrid element analysis [J]. International Journal of Impact Engineering, 2010, 37(10): 1056–1071. DOI: 10.1016/j.ijimpeng.2010.04.007.
    [11] YANG Y F, LIU Y C, XUE S N, et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles [J]. Composite Structures, 2021, 267: 113856. DOI: 10.1016/j.compstruct.2021.113856.
    [12] ZHOU Y, YAO W T, ZHANG Z W, et al. The effect of cumulative damage on the ballistic performance of plain weaves [J]. Composite Structures, 2022, 297: 115978. DOI: 10.1016/j.compstruct.2022.115978.
    [13] NILAKANTAN G. Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies [J]. Composite Structures, 2013, 104: 1–13. DOI: 10.1016/j.compstruct.2013.04.001.
    [14] HA-MINH C, IMAD A, KANIT T, et al. Numerical analysis of a ballistic impact on textile fabric [J]. International Journal of Mechanical Sciences, 2013, 69: 32–39. DOI: 10.1016/j.ijmecsci.2013.01.014.
    [15] ROYLANCE D. Wave propagation in a viscoelastic fiber subjected to transverse impact [J]. Journal of Applied Mechanics, 1973, 40(1): 143–148. DOI: 10.1115/1.3422914.
    [16] TAYLOR W J, VINSON J R. Modeling ballistic impact into flexible materials [J]. AIAA Journal, 1990, 28(12): 2098–2103. DOI: 10.2514/3.10527.
    [17] SHIM V P W, TAN V B C, TAY T E. Modelling deformation and damage characteristics of woven fabric under small projectile impact [J]. International Journal of Impact Engineering, 1995, 16(4): 585–605. DOI: 10.1016/0734-743X(94)00063-3.
    [18] KOH A C P, SHIM V P W, TAN V B C. Dynamic behaviour of UHMWPE yarns and addressing impedance mismatch effects of specimen clamps [J]. International Journal of Impact Engineering, 2010, 37(3): 324–332. DOI: 10.1016/j.ijimpeng.2009.10.008.
    [19] GUO Y B, SHIM V P W, TAN B W F. Dynamic tensile properties of magnesium nanocomposite [J]. Materials Science Forum, 2012, 706: 780–785. DOI: 10.4028/www.scientific.net/MSF.706-709.780.
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  77
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-09-26
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回