3D打印点阵夹芯结构冲击损伤的近场动力学模拟

陈洋 王肇喜 翟师慧 盛鹏 王者蓝 朱明亮

陈洋, 王肇喜, 翟师慧, 盛鹏, 王者蓝, 朱明亮. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟[J]. 爆炸与冲击, 2024, 44(3): 033101. doi: 10.11883/bzycj-2023-0124
引用本文: 陈洋, 王肇喜, 翟师慧, 盛鹏, 王者蓝, 朱明亮. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟[J]. 爆炸与冲击, 2024, 44(3): 033101. doi: 10.11883/bzycj-2023-0124
CHEN Yang, WANG Zhaoxi, ZHAI Shihui, SHENG Peng, WANG Zhelan, ZHU Mingliang. Peridynamic simulation of impact damage to 3D printedlattice sandwich structure[J]. Explosion And Shock Waves, 2024, 44(3): 033101. doi: 10.11883/bzycj-2023-0124
Citation: CHEN Yang, WANG Zhaoxi, ZHAI Shihui, SHENG Peng, WANG Zhelan, ZHU Mingliang. Peridynamic simulation of impact damage to 3D printedlattice sandwich structure[J]. Explosion And Shock Waves, 2024, 44(3): 033101. doi: 10.11883/bzycj-2023-0124

3D打印点阵夹芯结构冲击损伤的近场动力学模拟

doi: 10.11883/bzycj-2023-0124
基金项目: 上海市曙光计划项目(21SG30)
详细信息
    作者简介:

    陈 洋(1994- ),男,硕士,工程师,chenyangwust@sina.com

  • 中图分类号: O347.3

Peridynamic simulation of impact damage to 3D printedlattice sandwich structure

  • 摘要: 为了有效模拟3D打印点阵材料夹芯结构在弹丸冲击下的损伤破坏行为,在近场动力学微极模型中引入塑性键,构建了适用于点阵材料夹芯结构的模型和建模方法,在验证模型准确性的基础上,模拟分析了低速和高速弹丸冲击下点阵材料夹芯结构的损伤模式与破坏机理。结果表明:低速冲击下3D打印点阵夹芯结构的破坏模式以局部塑性变形为主;高速冲击下,破坏模式表现为溃裂、孔洞贯穿和碎片喷射,并伴随着大范围的塑性变形。低速冲击下塑性变形范围随冲击速度升高而增大,而高速冲击下则相反。高速冲击下,点阵夹芯结构的贯穿过程分为面板接触、局部屈服、芯材压溃、穿透4个阶段,弹丸经历了急-缓-急3段减速过程,并对应2个加速度高峰,第2个加速度峰值低于第1个加速度峰值的50%;低速冲击过程中,弹丸仅有1次减速过程,加速度峰值随冲击速度的升高而增大,最终弹丸反弹。
  • 图  1  近场动力学质点之间的相互作用

    Figure  1.  Interaction between particles in peridynamics

    图  2  微极模型

    Figure  2.  Micro-polar model

    图  3  点阵材料夹芯结构的近场动力学模型构建方法

    Figure  3.  Construction method of peridynamic model for lattice material sandwich structure

    图  4  点阵材料夹芯结构近场动力学模型算法流程

    Figure  4.  Algorithm flow of lattice sandwich structure modeling method based on peridynamics

    图  5  标准试件(单位:mm)

    Figure  5.  Standard test specimen (unit: mm)

    图  6  单轴压缩数值模拟结果

    Figure  6.  Uniaxial compression simulation results

    图  7  试件的名义应力-应变曲线

    Figure  7.  Nominal stress-strain curve of the specimen

    图  8  大质量落锤冲击试验系统

    Figure  8.  Large mass drop hammer impact test system

    图  9  低速冲击后标准试样的破坏形态

    Figure  9.  Structural failure modes of standard test specimen after low-speed impact

    图  10  落锤冲击加速度峰值

    Figure  10.  Peak impact acceleration of drop hammer

    图  11  弹丸冲击点阵材料夹芯结构模型示意图(单位:mm)

    Figure  11.  Schematic diagram of a projectile impacting on the lattice material sandwich structure model (unit: mm)

    图  12  弹丸冲击作用下点阵材料夹芯结构的破坏形态和损伤云图

    Figure  12.  Failure modes and damage of lattice material sandwich structure under projectile impact

    图  13  弹丸冲击后点阵材料夹芯结构的等效塑性应变云图

    Figure  13.  Equivalent plastic strain distribution of lattice material sandwich structure after projectile impact

    图  14  弹丸贯穿过程

    Figure  14.  Penetration process of projectile perforation

    图  15  高速冲击过程中弹丸的速度曲线

    Figure  15.  Velocity curves of projectile during high-speed impact process

    图  16  高速冲击过程中弹丸的加速度曲线

    Figure  16.  Acceleration curves of projectile during high-speed impact process

    图  17  低速冲击过程中弹丸的速度时程曲线

    Figure  17.  Velocity curves of projectileduring low-speed impact process

    图  18  低速冲击过程中弹丸的加速度时程曲线

    Figure  18.  Acceleration curves of projectileduring low-speed impact process

    表  1  Ti6Al4V的材料参数

    Table  1.   Material parameters of Ti6Al4V

    ρ/(kg∙m−3) E/GPa ν σ0/MPa s0
    4430 113 0.34 880 0.12
    下载: 导出CSV
  • [1] 陶斯嘉, 王小锋, 曾婧, 等. 点阵材料及其3D打印 [J]. 中国有色金属学报, 2022, 32(2): 416–444. DOI: 10.11817/j.ysxb.1004.0609.2021-42260.

    TAO S J, WANG X F, ZENG J, et al. Lattice materials and its fabrication by 3D printing: a review [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(2): 416–444. DOI: 10.11817/j.ysxb.1004.0609.2021-42260.
    [2] 杨鑫, 马文君, 王岩, 等. 增材制造金属点阵多孔材料研究进展 [J]. 材料导报, 2021, 35(7): 7114–7120. DOI: 10.11896/cldb.19110208.

    YANG X, MA W J, WANG Y, et al. Research progress of metal lattice porous materials for additive manufacturing [J]. Materials Reports, 2021, 35(7): 7114–7120. DOI: 10.11896/cldb.19110208.
    [3] 冀宾, 韩涵, 宋林郁, 等. 面内压缩超轻质点阵夹芯板的优化、试验与仿真 [J]. 复合材料学报, 2019, 36(4): 1045–1051. DOI: 10.13801/j.cnki.fhclxb.20180530.002.

    JI B, HAN H, SONG L Y, et al. Optimization, experiment and simulation of lightweight lattice sandwich plates under in-plane compression load [J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1045–1051. DOI: 10.13801/j.cnki.fhclxb.20180530.002.
    [4] 樊永霞, 王建, 张学哲, 等. SEBM成形片状极小曲面点阵材料的力学性能 [J]. 金属学报, 2021, 57(7): 871–879. DOI: 10.11900/0412.1961.2020.00291.

    FAN Y X, WANG J, ZHANG X Z, et al. Mechanical property of shell minimal surface lattice material printed by SEBM [J]. Acta Metallurgica Sinica, 2021, 57(7): 871–879. DOI: 10.11900/0412.1961.2020.00291.
    [5] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010−2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.

    YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
    [6] 程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟 [J]. 复合材料学报, 2022, 39(7): 3641–3651. DOI: 10.13801/j.cnki.fhclxb.20210903.005.

    CHENG S L, WU L J, SUN S, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3641–3651. DOI: 10.13801/j.cnki.fhclxb.20210903.005.
    [7] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.

    SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
    [8] 张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.

    ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.
    [9] CUI T N, ZHANG J H, LI K K, et al. Ballistic limit of sandwich plates with a metal foam core [J]. Journal of Applied Mechanics, 2022, 89(2): 021006. DOI: 10.1115/1.4052835.
    [10] KHODAEI M, HAGHIGHI-YAZDI M, SAFARABADI M. Numerical modeling of high velocity impact in sandwich panels with honeycomb core and composite skin including composite progressive damage model [J]. Journal of Sandwich Structures & Materials, 2020, 22(8): 2768–2795. DOI: 10.1177/1099636218817894.
    [11] KHAIRE N, TIWARI G, IQBAL M A. Energy absorption characteristic of sandwich shell structure against conical and hemispherical nose projectile [J]. Composite Structures, 2021, 258: 113396. DOI: 10.1016/j.compstruct.2020.113396.
    [12] 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.

    YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core [J]. Explosion and Shock Waves, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.
    [13] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0.
    [14] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
    [15] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers & Structures, 2005, 83(17/18): 1526–1535. DOI: 10.1016/j.compstruc.2004.11.026.
    [16] 杨娜娜, 赵天佑, 陈志鹏, 等. 破片冲击作用下舰船复合材料结构损伤的近场动力学模拟 [J]. 爆炸与冲击, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.

    YANG N N, ZHAO T Y, CHEN Z P, et al. Peridynamic simulation of damage of ship composite structure under fragments impact [J]. Explosion and Shock Waves, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.
    [17] 陈洋, 汤杰, 易果, 等. 泡沫铝夹层结构抗冲击性能的近场动力学模拟分析 [J]. 爆炸与冲击, 2023, 43(3): 034202. DOI: 10.11883/bzycj-2022-0110.

    CHEN Y, TANG J, YI G, et al. Simulation analysis on impact resistance of aluminum foam sandwich structures using peridynamics [J]. Explosion and Shock Waves, 2023, 43(3): 034202. DOI: 10.11883/bzycj-2022-0110.
    [18] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of concrete structures [J]. Nuclear Engineering and Design, 2007, 237(12/13): 1250–1258. DOI: 10.1016/j.nucengdes.2006.10.002.
    [19] RAHIMIJONOUSH A, BAYAT M. Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios [J]. Thin-Walled Structures, 2020, 157: 107079. DOI: 10.1016/j.tws.2020.107079107079.
    [20] 郭亚周, 刘小川, 何思渊, 等. 不同弹形撞击下泡沫铝夹芯结构动力学性能研究 [J]. 兵工学报, 2019, 40(10): 2032–2041. DOI: 10.3969/j.issn.1000-1093.2019.10.008.

    GUO Y Z, LIU X C, HE S Y, et al. Research on dynamic properties of aluminum foam sandwich structure impacted by projectiles with different shapes [J]. Acta Armamentarii, 2019, 40(10): 2032–2041. DOI: 10.3969/j.issn.1000-1093.2019.10.008.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  56
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-11-30
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回