Peridynamic simulation of impact damage to 3D printedlattice sandwich structure
-
摘要: 为了有效模拟3D打印点阵材料夹芯结构在弹丸冲击下的损伤破坏行为,在近场动力学微极模型中引入塑性键,构建了适用于点阵材料夹芯结构的模型和建模方法,在验证模型准确性的基础上,模拟分析了低速和高速弹丸冲击下点阵材料夹芯结构的损伤模式与破坏机理。结果表明:低速冲击下3D打印点阵夹芯结构的破坏模式以局部塑性变形为主;高速冲击下,破坏模式表现为溃裂、孔洞贯穿和碎片喷射,并伴随着大范围的塑性变形。低速冲击下塑性变形范围随冲击速度升高而增大,而高速冲击下则相反。高速冲击下,点阵夹芯结构的贯穿过程分为面板接触、局部屈服、芯材压溃、穿透4个阶段,弹丸经历了急-缓-急3段减速过程,并对应2个加速度高峰,第2个加速度峰值低于第1个加速度峰值的50%;低速冲击过程中,弹丸仅有1次减速过程,加速度峰值随冲击速度的升高而增大,最终弹丸反弹。Abstract: Lattice sandwich structures often exhibit discontinuous characteristics under impact, with damage behaviors involving multiple scales, from micro-scale cell fracture to macro-scale structural collapse. Traditional methods based on continuum mechanics have difficulty in accurately describing non-continuum problems such as material interfaces and fracture behavior, so usually they can only handle single-scale problems. Besides, lattice materials have complex geometric shapes, and mesh-dependent numerical methods such as finite element analysis may suffer mesh sensitivity and may even struggle to obtain an ideal mesh. In order to effectively simulate the damage behavior of 3D printed lattice sandwich structures under projectile impact, a lattice sandwich structure modeling method based on the theory of peridynamics and micro-polar model, and by considering plastic bonds, is proposed. The simulation results of uniaxial compression and large-mass low-speed impact tests are compared with experimental results to verify the accuracy of the peridynamics model for lattice sandwich structures. This model is then used to analyze the damage patterns and failure mechanisms of lattice sandwich panels under projectile impact from low to high velocities. The results show that under low-speed impact, the failure mode of 3D printed lattice sandwich structures is mainly localized plastic deformation, which causes small-scale fractures in the lattice structure near the impact location after arriving at a certain level of strain; while under high-speed impact, it usually exhibits collapse, hole piercing, and fragment ejection, accompanied by extensive plastic deformation. The plastic yield range of 3D printed lattice sandwich structures shows different patterns under high-speed and low-speed impacts, with the plastic deformation range increasing as the impact velocity increases under low-speed impact, and decreasing under high-speed impact. This is mainly influenced by the characteristics of the lattice structure and the material crack propagation during the impact process. Under high-speed impact, the process of projectile penetration will go through four stages; i.e., panel contact, local yield, core material compression, and penetration. Because the material characteristics at each stage are different, the projectile will experience a “sharp-slow-sharp” deceleration process featured by to two acceleration peaks, with the second peak value being 50% lower than the first. Compared with high-speed impact, the projectile under low-speed impact only experiences one deceleration process, and the peak acceleration increases with increasing impact velocity. When the plastic deformation and damage process of the lattice sandwich structure cannot fully dissipate the kinetic energy of the projectile, the release of elastic strain energy in the sandwich structure will cause the projectile to bounce back. The rebound speed in this study is less than 30% of the initial velocity. The research results can provide theoretical support and new analytical methods for the design and application of lattice materials.
-
Key words:
- lattice materials /
- sandwich structures /
- peridynamics /
- projectile impact /
- damage and failure
-
表 1 Ti6Al4V的材料参数
Table 1. Material parameters of Ti6Al4V
ρ/(kg∙m−3) E/GPa ν σ0/MPa s0 4430 113 0.34 880 0.12 -
[1] 陶斯嘉, 王小锋, 曾婧, 等. 点阵材料及其3D打印 [J]. 中国有色金属学报, 2022, 32(2): 416–444. DOI: 10.11817/j.ysxb.1004.0609.2021-42260.TAO S J, WANG X F, ZENG J, et al. Lattice materials and its fabrication by 3D printing: a review [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(2): 416–444. DOI: 10.11817/j.ysxb.1004.0609.2021-42260. [2] 杨鑫, 马文君, 王岩, 等. 增材制造金属点阵多孔材料研究进展 [J]. 材料导报, 2021, 35(7): 7114–7120. DOI: 10.11896/cldb.19110208.YANG X, MA W J, WANG Y, et al. Research progress of metal lattice porous materials for additive manufacturing [J]. Materials Reports, 2021, 35(7): 7114–7120. DOI: 10.11896/cldb.19110208. [3] 冀宾, 韩涵, 宋林郁, 等. 面内压缩超轻质点阵夹芯板的优化、试验与仿真 [J]. 复合材料学报, 2019, 36(4): 1045–1051. DOI: 10.13801/j.cnki.fhclxb.20180530.002.JI B, HAN H, SONG L Y, et al. Optimization, experiment and simulation of lightweight lattice sandwich plates under in-plane compression load [J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1045–1051. DOI: 10.13801/j.cnki.fhclxb.20180530.002. [4] 樊永霞, 王建, 张学哲, 等. SEBM成形片状极小曲面点阵材料的力学性能 [J]. 金属学报, 2021, 57(7): 871–879. DOI: 10.11900/0412.1961.2020.00291.FAN Y X, WANG J, ZHANG X Z, et al. Mechanical property of shell minimal surface lattice material printed by SEBM [J]. Acta Metallurgica Sinica, 2021, 57(7): 871–879. DOI: 10.11900/0412.1961.2020.00291. [5] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010−2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113. [6] 程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟 [J]. 复合材料学报, 2022, 39(7): 3641–3651. DOI: 10.13801/j.cnki.fhclxb.20210903.005.CHENG S L, WU L J, SUN S, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3641–3651. DOI: 10.13801/j.cnki.fhclxb.20210903.005. [7] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430. [8] 张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07. [9] CUI T N, ZHANG J H, LI K K, et al. Ballistic limit of sandwich plates with a metal foam core [J]. Journal of Applied Mechanics, 2022, 89(2): 021006. DOI: 10.1115/1.4052835. [10] KHODAEI M, HAGHIGHI-YAZDI M, SAFARABADI M. Numerical modeling of high velocity impact in sandwich panels with honeycomb core and composite skin including composite progressive damage model [J]. Journal of Sandwich Structures & Materials, 2020, 22(8): 2768–2795. DOI: 10.1177/1099636218817894. [11] KHAIRE N, TIWARI G, IQBAL M A. Energy absorption characteristic of sandwich shell structure against conical and hemispherical nose projectile [J]. Composite Structures, 2021, 258: 113396. DOI: 10.1016/j.compstruct.2020.113396. [12] 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core [J]. Explosion and Shock Waves, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060. [13] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0. [14] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. DOI: 10.1007/s10659-007-9125-1. [15] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers & Structures, 2005, 83(17/18): 1526–1535. DOI: 10.1016/j.compstruc.2004.11.026. [16] 杨娜娜, 赵天佑, 陈志鹏, 等. 破片冲击作用下舰船复合材料结构损伤的近场动力学模拟 [J]. 爆炸与冲击, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.YANG N N, ZHAO T Y, CHEN Z P, et al. Peridynamic simulation of damage of ship composite structure under fragments impact [J]. Explosion and Shock Waves, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019. [17] 陈洋, 汤杰, 易果, 等. 泡沫铝夹层结构抗冲击性能的近场动力学模拟分析 [J]. 爆炸与冲击, 2023, 43(3): 034202. DOI: 10.11883/bzycj-2022-0110.CHEN Y, TANG J, YI G, et al. Simulation analysis on impact resistance of aluminum foam sandwich structures using peridynamics [J]. Explosion and Shock Waves, 2023, 43(3): 034202. DOI: 10.11883/bzycj-2022-0110. [18] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of concrete structures [J]. Nuclear Engineering and Design, 2007, 237(12/13): 1250–1258. DOI: 10.1016/j.nucengdes.2006.10.002. [19] RAHIMIJONOUSH A, BAYAT M. Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios [J]. Thin-Walled Structures, 2020, 157: 107079. DOI: 10.1016/j.tws.2020.107079107079. [20] 郭亚周, 刘小川, 何思渊, 等. 不同弹形撞击下泡沫铝夹芯结构动力学性能研究 [J]. 兵工学报, 2019, 40(10): 2032–2041. DOI: 10.3969/j.issn.1000-1093.2019.10.008.GUO Y Z, LIU X C, HE S Y, et al. Research on dynamic properties of aluminum foam sandwich structure impacted by projectiles with different shapes [J]. Acta Armamentarii, 2019, 40(10): 2032–2041. DOI: 10.3969/j.issn.1000-1093.2019.10.008.