Effect of explosion location on impact response of titanium alloy directional detonation container
-
摘要: 研究了不同位置炸药爆炸作用下钛合金定向泄爆容器的冲击响应。通过试验与数值模拟,分析了100 g TNT炸药放置不同位置时容器的抗爆性能和冲击端头的飞行角度,并以限制罐体运动为目的,对罐体轴向受力进行了分析。研究表明:爆炸物位于轴线时,罐体产生弹性形变;紧贴内壁中间位置时,罐体外壁鼓包并贯穿开裂;紧贴内壁近端头处时,罐体外壁凸起。100 g TNT炸药作用下,冲击端头出口速度均值为124.45 m/s、最大偏角为2.3°,且爆炸物位置对端头出口速度影响较小。爆炸物位于轴线前、后端时,轴向力较爆炸物位于轴线中心时分别增大173%和116%。该研究可为民机定向泄爆容器及连接结构设计提供参考。
-
关键词:
- 冲击动力学 /
- 最小风险炸弹位置 /
- Ti-6Al-4V合金 /
- 定向泄爆容器
Abstract: The reported study focuses on the investigation of the impact response of a titanium alloy directional detonation container when it is subjected to explosives at different positions. Through experimental and numerical simulation studies, the explosion resistance of the container and the flight angle of the impact plug are investigated when 100 g of TNT is placed in different positions. In order to restrict the motion of the container, the axial force on the container is analyzed. The results show that the container undergoes elastic deformation when the explosive is located on the axis. When it is in close contact with the middle of the inner wall, the outer wall of the container bulges and cracks. When it is in close contact with the near end of the inner wall, the outer wall of the container protrudes. Under the action of 100 g of TNT, the average velocity of the impact plug outlet is 124.45 m/s, and the maximum deviation angle is 2.3°. The explosive position has little influence on the velocity of the plug outlet. When the explosive is located at the front and rear ends of the axis, the axial force increases by 173% and 116%, respectively, compared to that when the explosive is located at the center of the axis. The study can provide reference to the design of directional detonation container and connection structure of civil aircraft. -
表 1 测试工况
Table 1. Test condition
工况 炸药位置 炸药示意图 工况 炸药位置 炸药示意图 1 罐体轴线靠近后端盖处 4 罐体内壁靠近后端盖处 2 罐体轴线中心 5 罐体内壁中心 3 罐体轴线靠近端头处 6 罐体内壁靠近端头处 表 2 测试工况
Table 2. Test conditions
工况 炸药位置 端头速度/(m·s−1) 罐体损伤情况 1 罐体轴线靠近后端盖处 无变形、无开裂 2 罐体轴线中心位置 117.9 无变形、无开裂 3 罐体轴线靠近端头处 无变形、无开裂 4 罐体内壁靠近后端盖处 无变形、无开裂 5 罐体内壁中心位置 贯穿性裂纹,裂纹长度116.1 mm 6 罐体内壁靠近端头处 罐体凸起 材料 ρ/(g·cm−3) G/GPa A/GPa B/GPa C M n cp/(J·kg−1·K−1) Tm/K Tr/K TC4钛合金 4.428 109.778 1 098 1 092 0.014 1.1 0.930 560 1 878 293 15-5PH 7.800 196.507 1 077 499 0 0 0.568 502 1 713 293 ρ/(g·cm−3) 爆速/(m·s−1) 爆压/GPa a/GPa b/GPa R1 R2 ω E V 1.63 6 930 21 373.77 3.7471 4.15 0.9 0.35 6.0 1 表 5 数值模拟结果与试验结果的对比
Table 5. Comparison between simulation results and test results
工况 爆炸物质量/g 爆炸物位置 破坏模式 端头飞行速度 贯穿裂纹长度 试验/(m·s−1) 模拟/(m·s−1) 误差/% 试验/mm 模拟/mm 误差/% 2 100 罐体轴线中心 无变形、无开裂 117.9 125.5 6.45 − − − 5 100 罐体内壁中心 贯穿性裂纹 − 120.1 − 116.1 109.6 5.60 -
[1] Flight Safety Foundation. ASN Aviation safety database [EB/OL]. 2022. http://aviation-safety.net/database/year/2022/1. [2] FAR Part 25 Amendment No: 25-127. Security considerations requirements for transport gategory airplanes [S]. United States: Federal Aviation Administration, 2008. [3] 14 CFR Parts 25 Airworthiness standards: transport category airplane [S]. Washington: Federal Aviation Administration, 2013. [4] CCAR-121-R5 大型飞机公共航空运输承运人运行合格审定规则 [Z]. 中国民用航空局, 2017. [5] MASI F, MARIANO P M, VANNUCCI P. Blast actions in aircrafts: an integrated methodology for designing protection devices [J]. Engineering Structures, 2018, 175: 895–911. DOI: 10.1016/j.engstruct.2018.08.082. [6] DANG X L, CHAN P C. Design and test of a blast shield for Boeing 737 overhead compartment [J]. Shock and Vibration, 2006, 13(6): 547063. DOI: 10.1155/2006/547063. [7] LANGDON G S, KRIEK S, NURICK G N. Influence of venting on the response of scaled aircraft luggage containers subjected to internal blast loading [J]. International Journal of Impact Engineering, 2020, 141: 103567. DOI: 10.1016/j.ijimpeng.2020.103567. [8] Civil Aviation Authority. Aircraft hardening research programme-final overview report: CAA paper 2001/9 [R]. London: CAA, 2001. [9] 陆鹏, 郭忠宝, 杨超. 民用飞机最小风险炸弹位置适航符合性验证方法研究 [J]. 民用飞机设计与研究, 2016(4): 6–12. DOI: 10.19416/j.cnki.1674-9804.2016.04.002.LU P, GUO Z B, YANG C. Verification method investigation of airworthiness compliance for civil aircraft least risk bomb location design [J]. Civil Aircraft Design & Research, 2016(4): 6–12. DOI: 10.19416/j.cnki.1674-9804.2016.04.002. [10] 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应 [J]. 航空学报, 2022, 43(6): 525513. DOI: 10.7527/S1000-6893.2021.25513.FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525513. DOI: 10.7527/S1000-6893.2021.25513. [11] 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏 [J]. 航空学报, 2021, 42(2): 224252. DOI: 10.7527/S1000-6893.2020.24252.LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252. DOI: 10.7527/S1000-6893.2020.24252. [12] 朱铮铮, 冯蕴雯, 薛小峰, 等. 一种民机客舱便携式定向防爆装置: CN106197184A [P]. 2016-12-07. [13] 韩璐, 苏健军, 张玉磊, 等. 一种聚能泄压民机客舱定向防爆装置: CN109780956A [P]. 2019-05-21. [14] 李永鹏, 徐豫新, 杨祥, 等. 冲击载荷作用下机身壁板破坏效应及结构优化 [J]. 振动与冲击, 2023, 42(14): 40–47. DOI: 10.13465/j.cnki.jvs.2023.14.005.LI Y P, XU Y X, YANG X, et al. Failure effect and structure optimization of a fuselage panel under impact load [J]. Journal of Vibration and Shock, 2023, 42(14): 40–47. DOI: 10.13465/j.cnki.jvs.2023.14.005. [15] WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. DOI: 10.1016/j.ijimpeng.2013.04.010. [16] 戴志成. 飞机断离销剪切强度有限元与实验研究 [D]. 沈阳: 沈阳理工大学, 2017.DAI Z C. Finite element and experimental study on shear strength of aircraft fuse pin [D]. Shenyang: Shenyang Ligong University, 2017. [17] CASTEDO R, NATALE M, LÓPEZ L M, et al. Estimation of Jones-Wilkins-Lee parameters of emulsion explosives using cylinder tests and their numerical validation [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 290–301. DOI: 10.1016/j.ijrmms.2018.10.027. [18] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives: UCID-16189 [R]. Livermore: Lawrence Livermore National Laboratory, 1973. DOI: 10.2172/4479737.