• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸位置对钛合金定向泄爆容器冲击响应的影响

郭德龙 任云燕 徐豫新 李永鹏 李旭东 杨祥

郭德龙, 任云燕, 徐豫新, 李永鹏, 李旭东, 杨祥. 爆炸位置对钛合金定向泄爆容器冲击响应的影响[J]. 爆炸与冲击, 2024, 44(2): 025102. doi: 10.11883/bzycj-2023-0126
引用本文: 郭德龙, 任云燕, 徐豫新, 李永鹏, 李旭东, 杨祥. 爆炸位置对钛合金定向泄爆容器冲击响应的影响[J]. 爆炸与冲击, 2024, 44(2): 025102. doi: 10.11883/bzycj-2023-0126
GUO Delong, REN Yunyan, XU Yuxin, LI Yongpeng, LI Xudong, YANG Xiang. Effect of explosion location on impact response of titanium alloy directional detonation container[J]. Explosion And Shock Waves, 2024, 44(2): 025102. doi: 10.11883/bzycj-2023-0126
Citation: GUO Delong, REN Yunyan, XU Yuxin, LI Yongpeng, LI Xudong, YANG Xiang. Effect of explosion location on impact response of titanium alloy directional detonation container[J]. Explosion And Shock Waves, 2024, 44(2): 025102. doi: 10.11883/bzycj-2023-0126

爆炸位置对钛合金定向泄爆容器冲击响应的影响

doi: 10.11883/bzycj-2023-0126
基金项目: 工信部科技三项之民机项目(KJKT 19-057)
详细信息
    作者简介:

    郭德龙(1999- ),男,硕士研究生,guo-delong@qq.com

    通讯作者:

    徐豫新(1982- ),男,博士,准聘教授,xuyuxin@bit.edu.cn

  • 中图分类号: O383; V223.2

Effect of explosion location on impact response of titanium alloy directional detonation container

  • 摘要: 研究了不同位置炸药爆炸作用下钛合金定向泄爆容器的冲击响应。通过试验与数值模拟,分析了100 g TNT炸药放置不同位置时容器的抗爆性能和冲击端头的飞行角度,并以限制罐体运动为目的,对罐体轴向受力进行了分析。研究表明:爆炸物位于轴线时,罐体产生弹性形变;紧贴内壁中间位置时,罐体外壁鼓包并贯穿开裂;紧贴内壁近端头处时,罐体外壁凸起。100 g TNT炸药作用下,冲击端头出口速度均值为124.45 m/s、最大偏角为2.3°,且爆炸物位置对端头出口速度影响较小。爆炸物位于轴线前、后端时,轴向力较爆炸物位于轴线中心时分别增大173%和116%。该研究可为民机定向泄爆容器及连接结构设计提供参考。
  • 图  1  定向泄爆容器结构

    Figure  1.  Structure of the directional blowout container

    图  2  测试装置

    Figure  2.  Test equipment

    图  3  速度测试示意图

    Figure  3.  Schematic diagram of speed test

    图  4  TNT位于不同位置时罐体的损伤情况

    Figure  4.  Damage conditions of the tank when TNT was located at different positions

    图  5  高速摄影图像

    Figure  5.  High-speed photographic images

    图  6  定向泄爆容器网格模型

    Figure  6.  Tank grid model

    图  7  有限元模型

    Figure  7.  Finite element model

    图  8  工况5中试验与数值模拟破坏形貌对比

    Figure  8.  Comparison of failure morphologies by test and simulation in case 5

    图  9  工况5和工况6罐体的破坏形貌损伤云图

    Figure  9.  Damage nephograms of the tanks in case 5 and case 6

    图  10  工况5和工况6罐体内空气域的压力云图

    Figure  10.  Air domain pressure nephograms in the tanks in case 5 and case 6

    图  11  工况2和工况6端头的损伤云图

    Figure  11.  Damage nephograms of the head in case 2 and case 6

    图  12  工况2和工况6端头的偏转角度

    Figure  12.  Deflection angles of the impact plugs in case 2 and case 6

    图  13  炸药位于不同位置时端头的速度

    Figure  13.  Terminal velocity when the explosives at different locations

    图  14  第1阶段的罐体轴向力

    Figure  14.  Axial force of the tank in stage 1

    图  15  第2阶段罐体轴向力

    Figure  15.  Axial force of the tank in stage 2

    图  16  各阶段的轴向力峰值

    Figure  16.  Peak value of axial force in each stage

    表  1  测试工况

    Table  1.   Test condition

    工况 炸药位置 炸药示意图 工况 炸药位置 炸药示意图
    1 罐体轴线靠近后端盖处 4 罐体内壁靠近后端盖处
    2 罐体轴线中心 5 罐体内壁中心
    3 罐体轴线靠近端头处 6 罐体内壁靠近端头处
    下载: 导出CSV

    表  2  测试工况

    Table  2.   Test conditions

    工况 炸药位置 端头速度/(m·s−1) 罐体损伤情况
    1 罐体轴线靠近后端盖处 无变形、无开裂
    2 罐体轴线中心位置 117.9 无变形、无开裂
    3 罐体轴线靠近端头处 无变形、无开裂
    4 罐体内壁靠近后端盖处 无变形、无开裂
    5 罐体内壁中心位置 贯穿性裂纹,裂纹长度116.1 mm
    6 罐体内壁靠近端头处 罐体凸起
    下载: 导出CSV

    表  3  TC4钛合金和15-5PH材料参数[15-16]

    Table  3.   Material parameters of TC4 titanium alloy and 15-5PH[15-16]

    材料 ρ/(g·cm−3) G/GPa A/GPa B/GPa C M n cp/(J·kg−1·K−1) Tm/K Tr/K
    TC4钛合金 4.428 109.778 1 098 1 092 0.014 1.1 0.930 560 1 878 293
    15-5PH 7.800 196.507 1 077 499 0 0 0.568 502 1 713 293
    下载: 导出CSV

    表  4  TNT材料参数[18]

    Table  4.   TNT material parameters[18]

    ρ/(g·cm−3)爆速/(m·s−1)爆压/GPaa/GPab/GPaR1R2ωEV
    1.636 93021373.773.74714.150.90.356.01
    下载: 导出CSV

    表  5  数值模拟结果与试验结果的对比

    Table  5.   Comparison between simulation results and test results

    工况 爆炸物质量/g 爆炸物位置 破坏模式 端头飞行速度 贯穿裂纹长度
    试验/(m·s−1) 模拟/(m·s−1) 误差/% 试验/mm 模拟/mm 误差/%
    2 100 罐体轴线中心 无变形、无开裂 117.9 125.5 6.45
    5 100 罐体内壁中心 贯穿性裂纹 120.1 116.1 109.6 5.60
    下载: 导出CSV
  • [1] Flight Safety Foundation. ASN Aviation safety database [EB/OL]. 2022. http://aviation-safety.net/database/year/2022/1.
    [2] FAR Part 25 Amendment No: 25-127. Security considerations requirements for transport gategory airplanes [S]. United States: Federal Aviation Administration, 2008.
    [3] 14 CFR Parts 25 Airworthiness standards: transport category airplane [S]. Washington: Federal Aviation Administration, 2013.
    [4] CCAR-121-R5 大型飞机公共航空运输承运人运行合格审定规则 [Z]. 中国民用航空局, 2017.
    [5] MASI F, MARIANO P M, VANNUCCI P. Blast actions in aircrafts: an integrated methodology for designing protection devices [J]. Engineering Structures, 2018, 175: 895–911. DOI: 10.1016/j.engstruct.2018.08.082.
    [6] DANG X L, CHAN P C. Design and test of a blast shield for Boeing 737 overhead compartment [J]. Shock and Vibration, 2006, 13(6): 547063. DOI: 10.1155/2006/547063.
    [7] LANGDON G S, KRIEK S, NURICK G N. Influence of venting on the response of scaled aircraft luggage containers subjected to internal blast loading [J]. International Journal of Impact Engineering, 2020, 141: 103567. DOI: 10.1016/j.ijimpeng.2020.103567.
    [8] Civil Aviation Authority. Aircraft hardening research programme-final overview report: CAA paper 2001/9 [R]. London: CAA, 2001.
    [9] 陆鹏, 郭忠宝, 杨超. 民用飞机最小风险炸弹位置适航符合性验证方法研究 [J]. 民用飞机设计与研究, 2016(4): 6–12. DOI: 10.19416/j.cnki.1674-9804.2016.04.002.

    LU P, GUO Z B, YANG C. Verification method investigation of airworthiness compliance for civil aircraft least risk bomb location design [J]. Civil Aircraft Design & Research, 2016(4): 6–12. DOI: 10.19416/j.cnki.1674-9804.2016.04.002.
    [10] 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应 [J]. 航空学报, 2022, 43(6): 525513. DOI: 10.7527/S1000-6893.2021.25513.

    FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525513. DOI: 10.7527/S1000-6893.2021.25513.
    [11] 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏 [J]. 航空学报, 2021, 42(2): 224252. DOI: 10.7527/S1000-6893.2020.24252.

    LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252. DOI: 10.7527/S1000-6893.2020.24252.
    [12] 朱铮铮, 冯蕴雯, 薛小峰, 等. 一种民机客舱便携式定向防爆装置: CN106197184A [P]. 2016-12-07.
    [13] 韩璐, 苏健军, 张玉磊, 等. 一种聚能泄压民机客舱定向防爆装置: CN109780956A [P]. 2019-05-21.
    [14] 李永鹏, 徐豫新, 杨祥, 等. 冲击载荷作用下机身壁板破坏效应及结构优化 [J]. 振动与冲击, 2023, 42(14): 40–47. DOI: 10.13465/j.cnki.jvs.2023.14.005.

    LI Y P, XU Y X, YANG X, et al. Failure effect and structure optimization of a fuselage panel under impact load [J]. Journal of Vibration and Shock, 2023, 42(14): 40–47. DOI: 10.13465/j.cnki.jvs.2023.14.005.
    [15] WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. DOI: 10.1016/j.ijimpeng.2013.04.010.
    [16] 戴志成. 飞机断离销剪切强度有限元与实验研究 [D]. 沈阳: 沈阳理工大学, 2017.

    DAI Z C. Finite element and experimental study on shear strength of aircraft fuse pin [D]. Shenyang: Shenyang Ligong University, 2017.
    [17] CASTEDO R, NATALE M, LÓPEZ L M, et al. Estimation of Jones-Wilkins-Lee parameters of emulsion explosives using cylinder tests and their numerical validation [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 290–301. DOI: 10.1016/j.ijrmms.2018.10.027.
    [18] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives: UCID-16189 [R]. Livermore: Lawrence Livermore National Laboratory, 1973. DOI: 10.2172/4479737.
  • 加载中
推荐阅读
爆炸作用下建筑结构高效毁伤评估方法
吕晋贤 等, 爆炸与冲击, 2025
混凝土中多点聚集爆炸效应起爆参数优化设计
时本军 等, 爆炸与冲击, 2025
动载荷下固体推进剂损伤演化原位成像研究
苑永祥 等, 爆炸与冲击, 2025
坑道内爆炸条件下温压炸药的爆炸特性及其影响因素
纪玉国 等, 爆炸与冲击, 2024
爆炸冲击作用对电子雷管引火药头损伤及发火时间的影响
杨霖 等, 高压物理学报, 2025
爆轰加载下tatb基钝感炸药的冲击-卸载-再冲击实验装置设计与模拟
樊辉 等, 高压物理学报, 2024
近场多发爆炸荷载作用下方钢管构件的动态响应及其损伤
王万月 等, 高压物理学报, 2022
Bodipy-based fluorescent probe for cysteine detection and its applications in food analysis, test strips and biological imaging
Yang, Xiaokun et al., FOOD CHEMISTRY, 2023
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024
Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast
STRUCTURES, 2025
Powered by
图(16) / 表(5)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  174
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-09-05
  • 网络出版日期:  2023-12-25
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回