恒定高应变率拉伸条件下泡沫金属力学性能

张晓阳 谭仕锋 刘泽宇 赵飘

张晓阳, 谭仕锋, 刘泽宇, 赵飘. 恒定高应变率拉伸条件下泡沫金属力学性能[J]. 爆炸与冲击, 2024, 44(1): 013105. doi: 10.11883/bzycj-2023-0128
引用本文: 张晓阳, 谭仕锋, 刘泽宇, 赵飘. 恒定高应变率拉伸条件下泡沫金属力学性能[J]. 爆炸与冲击, 2024, 44(1): 013105. doi: 10.11883/bzycj-2023-0128
ZHANG Xiaoyang, TAN Shifeng, LIU Zeyu, ZHAO Piao. Mechanical property of metallic foams under dynamic tension with constant high strain rate[J]. Explosion And Shock Waves, 2024, 44(1): 013105. doi: 10.11883/bzycj-2023-0128
Citation: ZHANG Xiaoyang, TAN Shifeng, LIU Zeyu, ZHAO Piao. Mechanical property of metallic foams under dynamic tension with constant high strain rate[J]. Explosion And Shock Waves, 2024, 44(1): 013105. doi: 10.11883/bzycj-2023-0128

恒定高应变率拉伸条件下泡沫金属力学性能

doi: 10.11883/bzycj-2023-0128
基金项目: 国家自然科学基金项目(11902140);湖南省自然科学基金项目(2018JJ3425);
详细信息
    作者简介:

    张晓阳(1988- ),男,博士,讲师,xyzhang@usc.edu.cn

  • 中图分类号: O347.1

Mechanical property of metallic foams under dynamic tension with constant high strain rate

  • 摘要: 为了探究泡沫金属恒定应变率动态拉伸力学行为,基于3D Voronoi模型,采用双向拉伸加载方式和1.55倍等效胞孔直径高度的试件,实现了5000 s−1恒定高应变率动态拉伸条件下泡沫金属力学性能测试数值模拟实验,模拟结果显示:动态拉伸过程满足应力均匀性和变形均匀性要求,且试件破坏位置合理;在恒定应变率(0.5~5000 s−1)动态拉伸时,泡沫金属的破坏应变基本不受应变率的影响;当应变率不超过500 s−1 时,破坏应力受应变率影响很小,当应变率在 500~5000 s−1 时,破坏应力随着加载速率的增大而线性增大。
  • 图  1  3D Voronoi模型及网格划分

    Figure  1.  3D Voronoi model and grid division

    图  2  模型A、B拉伸加载示意

    Figure  2.  Schematic under tensile loading of model A and B

    图  3  动态拉伸加载应变率-时间曲线

    Figure  3.  Stain rate-time curve of dynamic tensile simulations

    图  4  模型A和B拉伸向均分示意图

    Figure  4.  Schematic of drawing direction equalization of model A and B

    图  5  各组模型伪应变能与内能比值($ \eta ={E}_{\mathrm{a}\mathrm{s}}/U $

    Figure  5.  Ratio of the artificial strain energy to internal energy ($ \eta ={E}_{\mathrm{a}\mathrm{s}}/U $) for dynamic tension simulations

    图  6  300 s−1拉伸时模型z=0截面变形过程

    Figure  6.  Deformations of foams at z=0 section under dynamic tension loading with strain rate of 300 s−1

    图  7  模型动态拉伸破坏示意图

    Figure  7.  Dynamic tensile failure diagram of each model

    图  8  拉伸模型应力-应变曲线及其应力不均匀性指标

    Figure  8.  Stress-strain curves and stress inhomogeneity of models

    图  9  各组模型应变不均匀性指标

    Figure  9.  Strain inhomogeneity of foam models

    图  10  模型B重复性验证

    Figure  10.  Repeatability verification of model B

    图  11  模型B高应变率拉伸破坏

    Figure  11.  Failure of the model B under high strain rate tensile loading

    图  12  模型B动态拉伸应力-应变曲线及不均匀性指标(5000 s−1

    Figure  12.  Dynamic tensile stress-strain curves and non-uniformity of the model B (5000 s−1)

    图  13  模型B不同应变率动态拉伸应力−应变曲线

    Figure  13.  Stress-strain curves of model B under dynamic tension loading with different strain rates

    图  14  应变率对泡沫铝动态拉伸破坏应力和应变的影响

    Figure  14.  Effects of strain rate on failure stress and strain of aluminum foam under dynamic tension loading

  • [1] GIBSON L J, ASHBY M F, ZHANG J, et al. Failure surfaces for cellular materials under multiaxial loads—I. Modelling [J]. International Journal of Mechanical Sciences, 1989, 31(9): 635–663. DOI: 10.1016/S0020-7403(89)80001-3.
    [2] YUAN H, ZHANG J X. Dynamic response of slender multilayer sandwich beams with fiber-metal laminate face-sheets subjected to low-velocity impact [J]. Thin-Walled Structures, 2022, 172: 108932. DOI: 10.1016/j.tws.2022.108932.
    [3] BABAKHANI A, GOLESTANIPOUR M, ZEBARJAD S M. Modelling of aluminium foam core sandwich panels under impact perforation [J]. Materials Science and Technology, 2016, 32(13): 1330–1337. DOI: 10.1080/02670836.2015.1122297.
    [4] 朱凌, 郭开岭, 余同希, 等. 泡沫金属夹芯梁在重复冲击下的动态响应 [J]. 爆炸与冲击, 2021, 41(7): 073101. DOI: 10.11883/bzycj-2020-0198.

    ZHU L, GUO K L, YU T X, et al. Dynamic responses of metal foam sandwich beams to repeated impacts [J]. Explosion and Shock Waves, 2021, 41(7): 073101. DOI: 10.11883/bzycj-2020-0198.
    [5] 张元瑞, 汪高飞, 张永亮, 等. 基于泡沫铝复合结构的汽车座椅横梁填充设计与优化 [J]. 机械强度, 2022, 44(1): 140–147. DOI: 10.16579/j.issn.1001.9669.2022.01.019.

    ZHANG Y R, WANG G F, ZHANG Y L, et al. Filling design and optimization of automobile seat crossbeam based on aluminum foam composite structure [J]. Journal of Mechanical Strength, 2022, 44(1): 140–147. DOI: 10.16579/j.issn.1001.9669.2022.01.019.
    [6] 刘伟明, 程和法, 黄笑梅, 等. 开孔泡沫铝填充圆管的准静态压缩行为 [J]. 爆炸与冲击, 2009, 29(6): 654–658. DOI: 10.11883/1001-1455(2009)06-0654-05.

    LIU W M, CHENG H F, HUANG X M, et al. Quasi-static compression behaviors of cylindrical tubes filled with open-cell aluminum foam [J]. Explosion and Shock Waves, 2009, 29(6): 654–658. DOI: 10.11883/1001-1455(2009)06-0654-05.
    [7] NAMMI S K, MYLER P, EDWARDS G. Finite element analysis of closed-cell aluminium foam under quasi-static loading [J]. Materials & Design, 2010, 31(2): 712–722. DOI: 10.1016/j.matdes.2009.08.010.
    [8] 庄蔚敏, 王恩铭. 胞孔孔径对泡沫铝压缩力学性能影响的仿真研究 [J]. 机械工程学报, 2022, 58(12): 75–82,92. DOI: 10.3901/JME.2022.12.075.

    ZHUANG W M, WANG E M. Simulation study on the influence of pore size on the compression mechanical properties of aluminum foam [J]. Chinese Journal of Mechanical Engineering, 2022, 58(12): 75–82,92. DOI: 10.3901/JME.2022.12.075.
    [9] 王二恒, 虞吉林, 王飞, 等. 泡沫铝材料准静态本构关系的理论和实验研究 [J]. 力学学报, 2004, 36(6): 673–679. DOI: 10.3321/j.issn:0459-1879.2004.06.005.

    WANG E H, YU J L, WANG F, et al. A theoretical and experimental study on the quasi-static constitutive model of aluminum foams [J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 673–679. DOI: 10.3321/j.issn:0459-1879.2004.06.005.
    [10] BALCH D K, O’DWYER J G, DAVIS G R, et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions [J]. Materials Science and Engineering: A, 2005, 391(1/2): 408–417. DOI: 10.1016/j.msea.2004.09.012.
    [11] AN Y K, YANG S Y, ZHAO E T, et al. Characterization of metal grid-structure reinforced aluminum foam under quasi-static bending loads [J]. Composite Structures, 2017, 178: 288–296. DOI: 10.1016/j.compstruct.2017.07.031.
    [12] YANG B, TANG L Q, LIU Y P, et al. Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests [J]. Materials Science and Engineering:A, 2013, 560: 734–743. DOI: 10.1016/j.msea.2012.10.027.
    [13] 李忠献, 张茂轩, 师燕超. 闭孔泡沫铝的动态压缩性能试验研究 [J]. 振动与冲击, 2017, 36(5): 1–6. DOI: 10.13465/j.cnki.jvs.2017.05.001.

    LI Z X, ZHANG M X, SHI Y C. Tests for dynamic compressive performance of closed-cell aluminum foams [J]. Journal of Vibration and Shock, 2017, 36(5): 1–6. DOI: 10.13465/j.cnki.jvs.2017.05.001.
    [14] 常白雪, 郑志军, 赵凯, 等. 具有恒定冲击载荷的梯度泡沫金属材料设计 [J]. 爆炸与冲击, 2019, 39(4): 041101. DOI: 10.11883/bzycj-2018-0431.

    CHANG B X, ZHENG Z J, ZHAO K, et al. Design of gradient foam metal materials with a constant impact load [J]. Explosion and Shock Waves, 2019, 39(4): 041101. DOI: 10.11883/bzycj-2018-0431.
    [15] 习会峰, 姚一鸣, 刘逸平, 等. 泡沫金属中高速拉伸的试验数据处理与材料力学性能测量 [J]. 实验力学, 2020, 35(6): 978–984. DOI: 10.7520/1001-4888-19-043.

    XI H F, YAO Y M, LIU Y P, et al. Data processing and mechanical properties measurement of foamed metal in medium to high-speed tensile test [J]. Journal of Experimental Mechanics, 2020, 35(6): 978–984. DOI: 10.7520/1001-4888-19-043.
    [16] HE M C, LI C, GONG W L, et al. Dynamic tests for a constant-resistance-large-deformation bolt using a modified SHTB system [J]. Tunnelling and Underground Space Technology, 2017, 64: 103–116. DOI: 10.1016/j.tust.2016.12.007.
    [17] LEDFORD N, PAUL H, GANZENMÜLLER G, et al. Investigations on specimen design and mounting for Split Hopkinson Tension Bar (SHTB) experiments [J]. EPJ Web of Conferences, 2015, 94: 01049. DOI: 10.1051/epjconf/20159401049.
    [18] 邹广平, 谌赫, 唱忠良. 一种基于SHTB的Ⅱ型动态断裂实验技术 [J]. 力学学报, 2017, 49(1): 117–125. DOI: 10.6052/0459-1879-16-239.

    ZOU G P, CHEN H, CHANG Z L. A modified mode II dynamic fracture test technique based on SHTB [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117–125. DOI: 10.6052/0459-1879-16-239.
    [19] MIRONE G, BARBAGALLO R, CADONI E. Tensile test of a HSLA steel at high strain rates with two different SHTB Facilities [J]. Procedia Engineering, 2017, 197: 89–98. DOI: 10.1016/j.proeng.2017.08.085.
    [20] 李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.

    LI S K, HU W J, XU W F, et al. Research progress on SHTB experiment technique at elevated temperature [J]. China Measurement & Test, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.
    [21] 康建功, 刘芳, 马惠香. 泡沫铝衰减一维应力波特性研究 [J]. 爆破, 2018, 35(1): 180–185. DOI: 10.3963/j.issn.1001-487X.2018.01.029.

    KANG J G, LIU F, MA H X. Study on attenuation characteristic of one-dimensional stress wave in foam aluminum [J]. Blasting, 2018, 35(1): 180–185. DOI: 10.3963/j.issn.1001-487X.2018.01.029.
    [22] XIE B X, TANG L Q, LIU Y P, et al. Numerical analysis on usability of SHPB to characterize dynamic stress–strain relation of metal foam [J]. International Journal of Applied Mechanics, 2017, 9(5): 1750075. DOI: 10.1142/s1758825117500752.
    [23] ZHANG X Y, WU Y D, TANG L Q, et al. Modeling and computing parameters of three-dimensional Voronoi models in nonlinear finite element simulation of closed-cell metallic foams [J]. Mechanics of Advanced Materials and Structures, 2018, 25(15/16): 1265–1275. DOI: 10.1080/15376494.2016.1190426.
    [24] WU Y D, QIAO D, TANG L Q, et al. Global topology of failure surfaces of metallic foams in principal-stress space and principal-strain space studied by numerical simulations [J]. International Journal of Mechanical Sciences, 2019, 151: 551–562. DOI: 10.1016/j.ijmecsci.2018.12.003.
    [25] ZHANG X Y, TANG L Q, LIU Z J, et al. Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D Voronoi model [J]. Mechanics of Materials, 2017, 104: 73–84. DOI: 10.1016/j.mechmat.2016.10.007.
    [26] ZHANG X Y, TANG L Q, JIANG Z Y, et al. Effects of Meso shape irregularity of metal foam on yield features under triaxial loading [J]. International Journal of Structural Stability and Dynamics, 2015, 15(7): 1540014. DOI: 10.1142/S0219455415400143.
  • 加载中
图(14)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  37
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-10-25
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回