碳纤维叶片的鸟弹冲击响应及损伤

张景景 谢洋 刘志芳 马小敏 李世强

张景景, 谢洋, 刘志芳, 马小敏, 李世强. 碳纤维叶片的鸟弹冲击响应及损伤[J]. 爆炸与冲击, 2023, 43(12): 123301. doi: 10.11883/bzycj-2023-0130
引用本文: 张景景, 谢洋, 刘志芳, 马小敏, 李世强. 碳纤维叶片的鸟弹冲击响应及损伤[J]. 爆炸与冲击, 2023, 43(12): 123301. doi: 10.11883/bzycj-2023-0130
ZHANG Jingjing, XIE Yang, LIU Zhifang, MA Xiaomin, LI Shiqiang. Bird impact response and damage of carbon fiber blades[J]. Explosion And Shock Waves, 2023, 43(12): 123301. doi: 10.11883/bzycj-2023-0130
Citation: ZHANG Jingjing, XIE Yang, LIU Zhifang, MA Xiaomin, LI Shiqiang. Bird impact response and damage of carbon fiber blades[J]. Explosion And Shock Waves, 2023, 43(12): 123301. doi: 10.11883/bzycj-2023-0130

碳纤维叶片的鸟弹冲击响应及损伤

doi: 10.11883/bzycj-2023-0130
基金项目: 国家自然科学基金(12072219,12202303,12272254)
详细信息
    作者简介:

    张景景(1995- ),男,硕士,763374834@qq.com

    通讯作者:

    李世强(1986- ),男,博士,副教授,lishiqiang@tyut.edu.cn

  • 中图分类号: O347.3

Bird impact response and damage of carbon fiber blades

  • 摘要: 通过实验和数值模拟研究了T300碳纤维叶片的抗冲击性能,探讨了碳纤维叶片的变形损伤模式及纤维层数对叶片抗冲击性能的影响。采用明胶鸟弹对不同层数碳纤维叶片开展了冲击实验,基于宏观连续损伤力学理论和Hashin失效准则针对碳纤维材料的失效形式编写了用户材料(vectorized user-material,VUMAT)子程序,采用光滑粒子流体动力学方法模拟明胶鸟弹,运用ABAQUS有限元软件对不同层数碳纤维叶片的动态响应过程进行了数值模拟,在鸟弹冲击过程中叶片变形、鸟流状态、冲击持续时间等方面,模拟结果与实验结果吻合较好。在鸟撞叶片初始冲击阶段,三种不同层数的叶片都有较大的变形,且叶片的变形模式相近;在冲击衰减阶段与恒流稳定阶段,不同层数碳纤维叶片的挠度与断裂位置都有较大差别。在鸟弹冲击叶片过程中,叶片以弯曲和扭转耦合变形模式为主,其中弯曲变形对其损伤破坏起主导作用。实验结果表明,碳纤维叶片损伤模式主要表现为:(1)叶根部边缘损伤,(2)叶根部完全断裂,(3)叶根部与叶顶部完全断裂。碳纤维抗冲击性能受层数的影响较大,通过实验和数值模拟对鸟弹冲击叶片进行机理分析,可为碳纤维叶片的工程设计和应用提供参考。
  • 图  1  模具制作流程及叶片尺寸

    Figure  1.  Mould making process and dimensional parameters of the blade

    图  2  真空辅助树脂传递模压法叶片成型实验及工艺图

    Figure  2.  Blade forming experiment and process diagram of vacuum-assisted resin transfer molding method

    图  3  制备完成的原始柱状明胶弹体

    Figure  3.  Original columnar gelatin projectile

    图  4  实验装置图

    Figure  4.  Experimental setup diagram

    图  5  叶片固定、撞击位置示意图及实验图

    Figure  5.  Schematic and experimental diagram of blade fixation and impact position

    图  6  不同层数碳纤维叶片的宏观损伤形态

    Figure  6.  Macroscopic damage patterns of carbon fiber blades with different layer numbers

    图  7  不同层数碳纤维叶片在鸟弹冲击下的模态变化

    Figure  7.  Modal changes of carbon fiber blades with different layer numbers under bird impact

    图  8  叶片鸟撞模型及边界条件

    Figure  8.  Blade bird collision model and boundary conditions

    图  9  纤维损伤演化

    Figure  9.  Fiber damage evolution

    图  10  实验及有限元模拟结果对比图

    Figure  10.  Comparison of experimental and finite element simulation results

    图  11  鸟撞碳纤维叶片不同时刻的应力云图

    Figure  11.  Stress of a carbon fiber blade under bird impact at different times

    图  12  鸟撞碳纤维叶片不同时刻的纤维损伤云图

    Figure  12.  Fiber damage of the carbon fiber blade under bird impact at different times

    图  13  碳纤维叶片鸟撞过程

    Figure  13.  Fiber blade bird strike process

    图  14  不同碳纤维层数叶片在不同时刻下的挠度变化

    Figure  14.  Deflection changes of carbon fiber blades with different layers at different times

    图  15  鸟撞碳纤维叶片冲击中心点的位移变化

    Figure  15.  Change of the displacement of the center point of a carbon fiber blade impacted by a bird

    表  1  碳纤维T300/914的材料参数[16]

    Table  1.   Material parameters of T300/914[16]

    E1/GPaE2/GPav12v21G/GPaXt/MPaXc/MPaYt/MPaYc/MPaSc/MPa
    73.5630.0550.0364.8539.5502550507128
    下载: 导出CSV

    表  2  实验数据

    Table  2.   Experimental data

    实验冲击气压p/MPa层数n厚度ht/mm叶片质量Mp/g鸟弹质量Mb/g冲击速度v/(m·s−1变形情况损伤等级
    10.160.9443.483.131.5根部与顶部断裂10、15
    20.160.9544.183.434.2根部与顶部断裂10、15
    30.160.9343.183.032.8根部与顶部断裂10、15
    40.181.2255.483.533.5根部断裂15
    50.181.2556.083.232.7根部断裂15
    60.181.2355.783.031.9根部断裂15
    70.1101.5672.083.033.6根部有损伤4
    80.1101.5471.483.634.1根部有损伤4
    90.1101.5772.583.033.4根部有损伤4
    下载: 导出CSV
  • [1] 张海洋, 王相平, 杜少辉, 等. 航空发动机风扇叶片的抗鸟撞设计 [J]. 航空动力学报, 2020, 35(6): 1157–1168. DOI: 10.13224/j.cnki.jasp.2020.06.005.

    ZHANG H Y, WANG X P, DU S H, et al. Design for anti-bird impact of aero-engine fan blade [J]. Journal of Aerospace Power, 2020, 35(6): 1157–1168. DOI: 10.13224/j.cnki.jasp.2020.06.005.
    [2] 李玉龙, 石霄鹏. 民用飞机鸟撞研究现状 [J]. 航空学报, 2012, 33(2): 189–198.

    LI Y L, SHI X P. Investigation of the present status of research on bird impacting on commercial airplanes [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189–198.
    [3] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. DOI: 10.1016/j.ijimpeng.2009.03.009.
    [4] LIU H B, LIU J, KABOGLU C, et al. The behaviour of fibre-reinforced composites subjected to a soft impact-loading: an experimental and numerical study [J]. Engineering Failure Analysis, 2020, 111: 104448. DOI: 10.1016/j.engfailanal.2020.104448.
    [5] MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fanblade [J]. International Journal of Impact Engineering, 2008, 35(6): 487–498. DOI: 10.1016/j.ijimpeng.2007.04.008.
    [6] 李志强, 韩强, 杨建林, 等. 基于SPH方法的鸟撞飞机风挡的数值模拟 [J]. 华南理工大学学报(自然科学版), 2009, 37(12): 147–151. DOI: 10.3321/j.issn:1000-565X.2009.12.028.

    LI Z Q, HAN Q, YANG J L, et al. SPH-based numerical simulation of aircraft windshield under bird impact [J]. Journal of South China University of Technology (Natural Science Edition), 2009, 37(12): 147–151. DOI: 10.3321/j.issn:1000-565X.2009.12.028.
    [7] SHMOTIN Y N, CHUPIN P V, GABOV D V, et al. Bird strike analysis of aircraft engine fan [C]//Proceedings of the 7th European LS-DYNA Conference. DYNAmore GmbH, 2009: 6.
    [8] AMOO L M. On the design and structural analysis of jet engine fan blade structures [J]. Progress in Aerospace Sciences, 2013, 60: 1–11. DOI: 10.1016/j.paerosci.2012.08.002.
    [9] TAHERI-BEHROOZ F, KASHANI A R S, HEFZABAD R N. Effects of material nonlinearity on load distribution in multi-bolt composite joints [J]. Composite Structures, 2015, 125: 195–201. DOI: 10.1016/j.compstruct.2015.01.047.
    [10] LIU L L, SHAO H Y, ZHU X Y, et al. Bird impact response and damage mechanism of 3D orthogonal woven composite aeroengine blades [J]. Composite Structures, 2023, 304: 116311. DOI: 10.1016/j.compstruct.2022.116311.
    [11] LIU L L, LUO G, CHEN W, et al. Dynamic behavior and damage mechanism of 3D braided composite fan blade under bird impact [J]. International Journal of Aerospace Engineering, 2018, 2018: 5906078. DOI: 10.1155/2018/5906078.
    [12] ZHOU Y D, SUN Y C, CAI W C. Bird-striking damage of rotating laminates using SPH-CDM method [J]. Aerospace Science and Technology, 2019, 84: 265–272. DOI: 10.1016/j.ast.2018.10.009.
    [13] 于永强, 李成, 铁瑛. 基于SPH方法的鸟撞复合材料层合板数值分析 [J]. 玻璃钢/复合材料, 2017(5): 48–52. DOI: 10.3969/j.issn.1003-0999.2017.05.008.

    YU Y Q, LI C, TIE Y. SPH-based numercial simulation of composite material under bird impact [J]. Composites Science and Engineering, 2017(5): 48–52. DOI: 10.3969/j.issn.1003-0999.2017.05.008.
    [14] 郝红勋, 李长季. 航空发动机风扇叶片结构损伤识别研究 [J]. 中国民航大学学报, 2009, 27(6): 17–20. DOI: 10.3969/j.issn.1001-5590.2009.06.005.

    HAO H X, LI C J. Research of fan blade of aero-engine damage identification in structures [J]. Journal of Civil Aviation University of China, 2009, 27(6): 17–20. DOI: 10.3969/j.issn.1001-5590.2009.06.005.
    [15] 梁智洪, 詹超, 张芝芳. 基于频率识别纤维增强树脂复合材料加筋板的分层损伤 [J]. 复合材料学报, 2019, 36(11): 2614–2627. DOI: 10.13801/j.cnki.fhclxb.20190305.004.

    LIANG Z H, ZHAN C, ZHANG Z F. Frequency-based delamination detection in stiffened fiber reinforced polymer composite plates [J]. Acta Materiae Compositae Sinica, 2019, 36(11): 2614–2627. DOI: 10.13801/j.cnki.fhclxb.20190305.004.
    [16] HOU J P, RUI Z C. Measurement of the properties of woven CFRP T300/914 at different strain rates [J]. Composites Science and Technology, 2000, 60(15): 2829–2834. DOI: 10.1016/S0266-3538(00)00151-2.
    [17] 柴象海, 侯亮, 王志强, 等. 航空发动机宽弦风扇叶片鸟撞损伤模型标定 [J]. 航空动力学报, 2016, 31(5): 1032–1038. DOI: 10.13224/j.cnki.jasp.2016.05.002.

    CHAI X H, HOU L, WANG Z Q, et al. Bird strike model calibration for an aero engine wide-chord fan blade [J]. Journal of Aerospace Power, 2016, 31(5): 1032–1038. DOI: 10.13224/j.cnki.jasp.2016.05.002.
    [18] TU H, FUNG T C, DEL LINZ P, et al. Projectile impact-induced spalling damage on carbon fiber reinforced polymer strengthened RC plates [J]. Composite Structures, 2023, 319: 117129. DOI: 10.1016/j.compstruct.2023.117129.
    [19] HORSLEY J. The Rolls-Royce way of validating fan integrity: AIAA 93-2602 [R]. AIAA, 1993.
    [20] 谭焕成, 许善迎, 黄雄, 等. 三维四向编织复合材料宏观有限元模型冲击损伤仿真及试验验证 [J]. 复合材料学报, 2018, 35(5): 1139–1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002.

    TAN H C, XU S Y, HUANG X, et al. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites [J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139–1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002.
    [21] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1981, 48(4): 846–852. DOI: 10.1115/1.3157744.
    [22] 马小敏. 强动载荷下纤维-金属层合板及其增强梯度夹芯结构的力学行为 [D]. 太原: 太原理工大学, 2019.

    MA X M. The mechanical behavior of fiber-metal laminates and the reinforced gradient sandwich panels under intensive loading [D]. Taiyuan: Taiyuan University of Technology, 2019.
    [23] SMOJVER I, IVANČEVIĆ D. Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach [J]. Composites Science and Technology, 2011, 71(4): 489–498. DOI: 10.1016/j.compscitech.2010.12.024.
    [24] BARBER J P, TAYLOR H R, WILBECK J S. Bird impact forces and pressures on rigid and compliant targets: ADA061313 [R]. Dayton: University of Dayton Research Institute, 1978.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  76
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-06-27
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回