纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响

武一丁 王晓东 余毅磊 马铭辉 陆文成 高光发

武一丁, 王晓东, 余毅磊, 马铭辉, 陆文成, 高光发. 纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响[J]. 爆炸与冲击, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133
引用本文: 武一丁, 王晓东, 余毅磊, 马铭辉, 陆文成, 高光发. 纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响[J]. 爆炸与冲击, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133
WU Yiding, WANG Xiaodong, YU Yilei, MA Minghui, LU Wencheng, GAO Guangfa. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor[J]. Explosion And Shock Waves, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133
Citation: WU Yiding, WANG Xiaodong, YU Yilei, MA Minghui, LU Wencheng, GAO Guangfa. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor[J]. Explosion And Shock Waves, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133

纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响

doi: 10.11883/bzycj-2023-0133
基金项目: 国家自然科学基金(12172179, 11772160, 11472008)
详细信息
    作者简介:

    武一丁(1999-  ),男,博士研究生,yidingwu@njust.edu.cn

    通讯作者:

    高光发(1980-  ),男,博士,教授,博士生导师,gfgao@ustc.edu.cn

  • 中图分类号: O385

Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor

  • 摘要: 以碳化硼陶瓷作为前置抗弹面板,以碳纤维T300、UHMWPE和Kevlar高性能纤维板的不同组合作为其复合背板,利用12.7 mm穿甲燃烧弹对不同结构的陶瓷/复合背板进行弹道冲击实验,通过回收破碎的弹体与陶瓷碎块,进行多级筛分称重,分析不同背板对应的陶瓷复合装甲的碎块分布规律与抗弹性能。研究表明:在陶瓷与纤维背板之间添加一层碳纤维板可以显著改善复合装甲的抗弹刚度梯度,提高整个抗弹靶板的结构刚度,进而改善弹体与整个面板之间的应力波传播形式,延长陶瓷锥体形成后与陶瓷面板脱离的时间和应力波在整个陶瓷面板内传播的作用时间,从而降低陶瓷面板内部拉伸波造成的拉伸断裂,延长弹体的驻留现象。利用Rosin-Rammler分布模型对陶瓷与弹体的碎块形式进行表征,结果表明:分别将一半厚度的UHMWPE纤维板和Kevlar纤维板替换为碳纤维背板,其陶瓷面板的半锥角分别增大了2.05%和4.20%,碎裂区整体平均特征尺寸分别下降了16.92%和42.96%;加入高抗弯强度的碳纤维作为复合装甲的中间过渡层后,背板的破坏形式改变,充分利用了纤维背板的高抗拉强度,从而提高整体复合装甲的抗弹性能。
  • 图  1  实验装置

    Figure  1.  Experimental setup

    图  2  不同背板下弹芯碎片累计质量M与等效直径x的拟合关系

    Figure  2.  Fitting relation between the cumulative mass (M)and the equivalent diameter (x) for bullet corefragments to different backplates

    图  3  不同背板下弹芯破碎尺寸分布的幂指数k和平均特征尺寸λ

    Figure  3.  Exponent (k) and haracteristic size (λ) for size distribution function of bullet core fragments to different backplates

    图  4  弹芯的碎片分布

    Figure  4.  Distribution of bullet core fragments

    图  5  弹芯破碎特征

    Figure  5.  Crushing characteristics of bullet cores

    图  6  弹芯断口SEM图像

    Figure  6.  SEM image of bullet core fracture

    图  7  陶瓷碎裂形态

    Figure  7.  Fragmentation morphology of ceramics

    图  8  不同背板对应陶瓷面板

    Figure  8.  Ceramic panels corresponding to different backplanes

    图  9  不同背板下陶瓷碎片累计质量M与等效直径x的拟合关系

    Figure  9.  Fitting relation between the cumulative mass (M)and the equivalent diameter (x) for ceramicfragments to different backplates

    图  10  不同背板下陶瓷破碎尺寸分布的幂指数k和平均特征尺寸λ

    Figure  10.  Exponent (k) and haracteristic size (λ) for size distribution function of ceramic fragmentsto different backplates

    图  11  复合背板受损情况

    Figure  11.  Damage of composite backplates

    图  12  UHMWPE典型损伤形式

    Figure  12.  Typical damage forms of UHMWPE

    图  13  微观下UHMWPE纤维损伤

    Figure  13.  Microscopic damage of UHMWPE fibers

    表  1  材料力学性能

    Table  1.   Mechanical properties of materials

    材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度/GPa
    T12A 7830 197 0.3 3.544
    B4C 2510 450 0.22
    下载: 导出CSV

    表  2  实验背板设计尺寸配置

    Table  2.   Design size configuration of experimental backplane

    实验 陶瓷面板 复合背板配置 靶板总面密度/(kg·m−2)
    背板1材料 厚度/mm 背板2材料 厚度/mm
    1# Kevlar/B4C UHMWPE 10.0 34.80
    2# Kevlar/B4C Kevlar 10.0 38.60
    3# Kevlar/B4C T300 10.0 40.10
    4# Kevlar/B4C UHMWPE 5.0 UHMWPE 5.0 34.80
    5# Kevlar/B4C T300 5.0 Kevlar 5.0 39.35
    6# Kevlar/B4C T300 5.0 UHMWPE 5.0 37.45
    下载: 导出CSV

    表  3  不同背板的实验结果数据

    Table  3.   Data of different backplane test results

    实验 着靶速度/(m·s−1) 后效靶穿深/(mm) 备注
    1# 514.9±2.0 9.2±0.2
    2# 503.4±2.0 10.1±0.2
    3# 505.3±2.0 7.9±0.2 多弹坑
    4# 507.2±2.0 9.8±0.2
    5# 501.8±2.0 5.7±0.2
    6# 491.1±2.0 6.5±0.2
    下载: 导出CSV

    表  4  多级筛分后的弹芯碎片质量

    Table  4.   Mass of bullet core fragments after multistage screening

    实验复合背板(厚度/mm)弹芯碎片质量/g
    合计>8 mm4~8 mm2~4 mm1~2 mm0.5~1 mm0~0.5 mm
    1#UHMWPE (10)30.7223.561.831.502.080.900.85
    2#Kevlar (10)30.2028.3200.480.760.330.31
    3#T300 (10)30.0411.8411.342.712.210.980.96
    4#UHMWPE (5)+UHMWPE (5)30.7325.033.790.620.360.430.50
    5#T300 (5)+Kevlar (5)28.4615.116.954.020.930.630.82
    6#T300 (5)+UHMWPE (5)26.7616.585.671.931.210.640.73
    下载: 导出CSV

    表  5  陶瓷半锥角与裂纹数量

    Table  5.   Measurement of ceramic half-cone angle and crack number

    实验 背板材料(厚度/mm) 陶瓷锥内径/mm 陶瓷锥外径/mm 陶瓷半锥角/(°) 径向裂纹数量
    1# UHMWPE(10) 33.95 104.59 74.19 12
    2# Kevlar(10) 24.63 91.54 73.35 11
    3# T300(10) 28.19 113.46 76.79 8
    4# UHMWPE(5)+UHMWPE(5) 24.09 95.70 74.39 9
    5# T300(5)+UHMWPE(5) 25.21 103.75 75.71 9
    6# T300(5)+Kevlar(5) 24.49 107.31 76.42 10
    下载: 导出CSV
  • [1] LEE M, YOO Y H. Analysis of ceramic/metal armour systems [J]. International Journal of Impact Engineering, 2001, 25(9): 819–829. DOI: 10.1016/S0734-743X(01)00025-2.
    [2] SHOKRIEH M M, JAVADPOUR G H. Penetration analysis of a projectile in ceramic composite armor [J]. Composite Structures, 2008, 82(2): 269–276. DOI: 10.1016/j.compstruct.2007.01.023.
    [3] LIU W L, CHEN Z F, CHENG X W, et al. Design and ballistic penetration of the ceramic composite armor [J]. Composites Part B: Engineering, 2016, 84: 33–40. DOI: 10.1016/j.compositesb.2015.08.071.
    [4] SADANANDAN S, HETHERINGTON J G. Characterisation of ceramic/steel and ceramic/aluminium armours subjected to oblique impact [J]. International Journal of Impact Engineering, 1997, 19(9/10): 811–819. DOI: 10.1016/S0734-743X(97)00019-5.
    [5] HU D A, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368–10376. DOI: 10.1016/j.ceramint.2017.05.071.
    [6] CHEN Z Y, XU Y Q, LI M L, et al. Investigation on residual strength and failure mechanism of the ceramic/UHMWPE armors after ballistic tests [J]. Materials, 2022, 15(3): 901. DOI: 10.3390/ma15030901.
    [7] CROUCH I G, APPLEBY-THOMAS G, HAZELL P J. A study of the penetration behaviour of mild-steel-cored ammunition against boron carbide ceramic armours [J]. International Journal of Impact Engineering, 2015, 80: 203–211. DOI: 10.1016/j.ijimpeng.2015.03.002.
    [8] LIU W L, CHEN Z H, CHEN Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421–427. DOI: 10.1016/j.matdes.2015.08.024.
    [9] WANG Q, CHEN Z H, CHEN Z F. Design and characteristics of hybrid composite armor subjected to projectile impact [J]. Materials & Design, 2013, 46: 634−639. DOI: 10.1016/j.matdes.2012.10.052.
    [10] FEJDYŚ M, KOŚLA K, KUCHARSKA-JASTRZĄBEK A, et al. Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres [J]. Fibres & Textiles in Eastern Europe, 2016, 24(3): 79–89. DOI: 10.5604/12303666.1196616.
    [11] RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles [J]. International Journal of Impact Engineering, 2019, 133: 103332. DOI: 10.1016/j.ijimpeng.2019.103332.
    [12] ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: a review [J]. Reliability Engineering & System Safety, 2014, 124: 32–55. DOI: 10.1016/j.ress.2013.11.010.
    [13] STRØMSØE E, INGEBRIGTSEN K O. A modification of the Mott formula for prediction of the fragment size distribution [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(5): 175–178. DOI: 10.1002/prep.19870120508.
    [14] JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials [J]. Ceramics International, 2017, 43(2): 2697–2704. DOI: 10.1016/j.ceramint.2016.11.087.
    [15] MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. DOI: 10.1016/j.ijsolstr.2018.08.025.
    [16] GRUJICIC M, SNIPES J, RAMASWAMI S. Ballistic-penetration resistance and flexural-stiffness optimization of a nacre-mimetic, B4C-reinforced, polyurea-matrix composite armor [J]. International Journal of Structural Integrity, 2017, 8(3): 341–372. DOI: 10.1108/IJSI-07-2016-0026.
    [17] 余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.

    YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
    [18] ZHANG Y J, CUI B, DONG H, et al. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor [J]. Ceramics International, 2022, 48(18): 26758–26771. DOI: 10.1016/j.ceramint.2022.05.374.
    [19] ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132.
    [20] ZHANG Y J, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests [J]. Ceramics International, 2021, 47(7): 10035–10049. DOI: 10.1016/j.ceramint.2020.12.150.
    [21] RAHBEK D B, SIMONS J W, JOHNSEN B B, et al. Effect of composite covering on ballistic fracture damage development in ceramic plates [J]. International Journal of Impact Engineering, 2017, 99: 58–68. DOI: 10.1016/j.ijimpeng.2016.09.010.
    [22] MOTT N F. Fragmentation of shell cases [J]. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [23] 王晓东, 余毅磊, 蒋招绣, 等. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究 [J]. 爆炸与冲击, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.

    WANG X D, YU Y L, JIANG Z X, et al. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities [J]. Explosion and Shock Waves, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.
    [24] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [25] YADAV S, RAVICHANDRAN G. Penetration resistance of laminated ceramic/polymer structures [J]. International Journal of Impact Engineering, 2003, 28(5): 557–574. DOI: 10.1016/S0734-743X(02)00122-7.
    [26] BAO J W, WANG Y W, AN R, et al. Investigation of the mechanical and ballistic properties of hybrid carbon/aramid woven laminates [J]. Defence Technology, 2022, 18(10): 1822–1833. DOI: 10.1016/j.dt.2021.09.009.
    [27] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992.
    [28] 余毅磊, 王晓东, 任文科, 等. 陶瓷/金属复合靶受12.7 mm穿甲燃烧弹侵彻时弹靶破碎特征 [J]. 兵工学报, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.

    YU Y L, WANG X D, REN W K, et al. Fragmentation characteristics of 12.7 mm armor-piercing incendiary projectile and ceramic/metal composite target during penetration [J]. Acta Armamentarii, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.
    [29] KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates [J]. European Journal of Mechanics-A/Solids, 2013, 42: 35–53. DOI: 10.1016/j.euromechsol.2013.04.002.
    [30] LIANG L, LIN Y Y, HUANG Y X, et al. Broadband stealth composite metastructure with high penetration protection [J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107069. DOI: 10.1016/j.compositesa.2022.107069.
    [31] WANG X D, YU Y L, ZHONG K, et al. Effects of impact velocity on the dynamic fragmentation of rigid-brittle projectiles and ceramic composite armors [J]. Latin American Journal of Solids and Structures, 2021, 18(8): e410. DOI: 10.1590/1679-78256701.
    [32] ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams [J]. International Journal of Impact Engineering, 2016, 93: 153–165. DOI: 10.1016/j.ijimpeng.2016.02.010.
    [33] 余毅磊, 王晓东, 任文科, 等. UHMWPE背板铺层角度对陶瓷复合靶板抗弹性的影响 [J]. 北京理工大学学报, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.

    YU Y L, WANG X D, REN W K, et al. Effect of UHMWPE back plate layering angle on the anti-elasticity of ceramic composite target plate [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  59
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-06-20
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回