Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor
-
摘要: 以碳化硼陶瓷作为前置抗弹面板,以碳纤维T300、UHMWPE和Kevlar高性能纤维板的不同组合作为其复合背板,利用12.7 mm穿甲燃烧弹对不同结构的陶瓷/复合背板进行弹道冲击实验,通过回收破碎的弹体与陶瓷碎块,进行多级筛分称重,分析不同背板对应的陶瓷复合装甲的碎块分布规律与抗弹性能。研究表明:在陶瓷与纤维背板之间添加一层碳纤维板可以显著改善复合装甲的抗弹刚度梯度,提高整个抗弹靶板的结构刚度,进而改善弹体与整个面板之间的应力波传播形式,延长陶瓷锥体形成后与陶瓷面板脱离的时间和应力波在整个陶瓷面板内传播的作用时间,从而降低陶瓷面板内部拉伸波造成的拉伸断裂,延长弹体的驻留现象。利用Rosin-Rammler分布模型对陶瓷与弹体的碎块形式进行表征,结果表明:分别将一半厚度的UHMWPE纤维板和Kevlar纤维板替换为碳纤维背板,其陶瓷面板的半锥角分别增大了2.05%和4.20%,碎裂区整体平均特征尺寸分别下降了16.92%和42.96%;加入高抗弯强度的碳纤维作为复合装甲的中间过渡层后,背板的破坏形式改变,充分利用了纤维背板的高抗拉强度,从而提高整体复合装甲的抗弹性能。
-
关键词:
- 碳化硼陶瓷 /
- 复合装甲 /
- 12.7 mm穿甲燃烧弹 /
- 弹芯破碎 /
- 抗弹复合材料
Abstract: Lightweight ceramic composite armor is widely used for its lightweight and high bullet-resistant performance. To improve the bullet-resistant performance of ceramic composite armor, research has been conducted on the lightweight and performance improvement of different backing plates. The optimization of the structural design of lightweight ceramic composite armor is of great significance. Taking boron carbide ceramic as the front bullet-resistant panel, and different combinations of carbon fiber T300, UHMWPE, and Kevlar high-performance fiber boards as its composite backing plates. Using a 12.7 mm armor-piercing incendiary bullet to conduct ballistic impact experiments on ceramic/composite backing plates of different structures, the distribution law of fragment blocks and bullet-resistant performance of ceramic composite armor corresponding to different backing plates were analyzed by recovering shattered bullets and ceramic fragments and performing multi-stage screening and weighing. The study shows that adding a layer of carbon fiber board between the ceramic and fiber backing plates can significantly improve the bullet-resistant stiffness gradient of the composite armor, increase the structural stiffness of the entire bullet-resistant target board, and improve the stress wave propagation form between the bullet and the entire panel, prolonging the time and the effect of the stress wave propagation inside the entire ceramic panel after the formation of the ceramic cone and detachment from the ceramic panel, thereby reducing the tensile fracture caused by tensile waves inside the ceramic panel and prolonging the phenomenon of bullet retention. The Rosin-Rammler distribution model was used to characterize the fragment forms of ceramics and bullets. The results show that replacing half-thickness UHMWPE fiber board and Kevlar fiber board with carbon fiber backing plate respectively increased the half-cone angle of the ceramic panel by 2.05% and 4.20%, and the overall average characteristic size of the fragmentation zone decreased by 16.92% and 42.96% respectively. After adding a carbon fiber with high bending strength as the intermediate transition layer of the composite armor board, the failure mode of the backing plate changed, fully utilizing the high tensile strength of the fiber backing plate, thereby improving the overall bullet-resistant performance of the composite armor. -
表 1 材料力学性能
Table 1. Mechanical properties of materials
材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度/GPa T12A 7830 197 0.3 3.544 B4C 2510 450 0.22 − 表 2 实验背板设计尺寸配置
Table 2. Design size configuration of experimental backplane
实验 陶瓷面板 复合背板配置 靶板总面密度/(kg·m−2) 背板1材料 厚度/mm 背板2材料 厚度/mm 1# Kevlar/B4C UHMWPE 10.0 − − 34.80 2# Kevlar/B4C Kevlar 10.0 − − 38.60 3# Kevlar/B4C T300 10.0 − − 40.10 4# Kevlar/B4C UHMWPE 5.0 UHMWPE 5.0 34.80 5# Kevlar/B4C T300 5.0 Kevlar 5.0 39.35 6# Kevlar/B4C T300 5.0 UHMWPE 5.0 37.45 表 3 不同背板的实验结果数据
Table 3. Data of different backplane test results
实验 着靶速度/(m·s−1) 后效靶穿深/(mm) 备注 1# 514.9±2.0 9.2±0.2 − 2# 503.4±2.0 10.1±0.2 − 3# 505.3±2.0 7.9±0.2 多弹坑 4# 507.2±2.0 9.8±0.2 − 5# 501.8±2.0 5.7±0.2 − 6# 491.1±2.0 6.5±0.2 − 表 4 多级筛分后的弹芯碎片质量
Table 4. Mass of bullet core fragments after multistage screening
实验 复合背板(厚度/mm) 弹芯碎片质量/g 合计 >8 mm 4~8 mm 2~4 mm 1~2 mm 0.5~1 mm 0~0.5 mm 1# UHMWPE (10) 30.72 23.56 1.83 1.50 2.08 0.90 0.85 2# Kevlar (10) 30.20 28.32 0 0.48 0.76 0.33 0.31 3# T300 (10) 30.04 11.84 11.34 2.71 2.21 0.98 0.96 4# UHMWPE (5)+UHMWPE (5) 30.73 25.03 3.79 0.62 0.36 0.43 0.50 5# T300 (5)+Kevlar (5) 28.46 15.11 6.95 4.02 0.93 0.63 0.82 6# T300 (5)+UHMWPE (5) 26.76 16.58 5.67 1.93 1.21 0.64 0.73 表 5 陶瓷半锥角与裂纹数量
Table 5. Measurement of ceramic half-cone angle and crack number
实验 背板材料(厚度/mm) 陶瓷锥内径/mm 陶瓷锥外径/mm 陶瓷半锥角/(°) 径向裂纹数量 1# UHMWPE(10) 33.95 104.59 74.19 12 2# Kevlar(10) 24.63 91.54 73.35 11 3# T300(10) 28.19 113.46 76.79 8 4# UHMWPE(5)+UHMWPE(5) 24.09 95.70 74.39 9 5# T300(5)+UHMWPE(5) 25.21 103.75 75.71 9 6# T300(5)+Kevlar(5) 24.49 107.31 76.42 10 -
[1] LEE M, YOO Y H. Analysis of ceramic/metal armour systems [J]. International Journal of Impact Engineering, 2001, 25(9): 819–829. DOI: 10.1016/S0734-743X(01)00025-2. [2] SHOKRIEH M M, JAVADPOUR G H. Penetration analysis of a projectile in ceramic composite armor [J]. Composite Structures, 2008, 82(2): 269–276. DOI: 10.1016/j.compstruct.2007.01.023. [3] LIU W L, CHEN Z F, CHENG X W, et al. Design and ballistic penetration of the ceramic composite armor [J]. Composites Part B: Engineering, 2016, 84: 33–40. DOI: 10.1016/j.compositesb.2015.08.071. [4] SADANANDAN S, HETHERINGTON J G. Characterisation of ceramic/steel and ceramic/aluminium armours subjected to oblique impact [J]. International Journal of Impact Engineering, 1997, 19(9/10): 811–819. DOI: 10.1016/S0734-743X(97)00019-5. [5] HU D A, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368–10376. DOI: 10.1016/j.ceramint.2017.05.071. [6] CHEN Z Y, XU Y Q, LI M L, et al. Investigation on residual strength and failure mechanism of the ceramic/UHMWPE armors after ballistic tests [J]. Materials, 2022, 15(3): 901. DOI: 10.3390/ma15030901. [7] CROUCH I G, APPLEBY-THOMAS G, HAZELL P J. A study of the penetration behaviour of mild-steel-cored ammunition against boron carbide ceramic armours [J]. International Journal of Impact Engineering, 2015, 80: 203–211. DOI: 10.1016/j.ijimpeng.2015.03.002. [8] LIU W L, CHEN Z H, CHEN Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421–427. DOI: 10.1016/j.matdes.2015.08.024. [9] WANG Q, CHEN Z H, CHEN Z F. Design and characteristics of hybrid composite armor subjected to projectile impact [J]. Materials & Design, 2013, 46: 634−639. DOI: 10.1016/j.matdes.2012.10.052. [10] FEJDYŚ M, KOŚLA K, KUCHARSKA-JASTRZĄBEK A, et al. Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres [J]. Fibres & Textiles in Eastern Europe, 2016, 24(3): 79–89. DOI: 10.5604/12303666.1196616. [11] RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles [J]. International Journal of Impact Engineering, 2019, 133: 103332. DOI: 10.1016/j.ijimpeng.2019.103332. [12] ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: a review [J]. Reliability Engineering & System Safety, 2014, 124: 32–55. DOI: 10.1016/j.ress.2013.11.010. [13] STRØMSØE E, INGEBRIGTSEN K O. A modification of the Mott formula for prediction of the fragment size distribution [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(5): 175–178. DOI: 10.1002/prep.19870120508. [14] JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials [J]. Ceramics International, 2017, 43(2): 2697–2704. DOI: 10.1016/j.ceramint.2016.11.087. [15] MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. DOI: 10.1016/j.ijsolstr.2018.08.025. [16] GRUJICIC M, SNIPES J, RAMASWAMI S. Ballistic-penetration resistance and flexural-stiffness optimization of a nacre-mimetic, B4C-reinforced, polyurea-matrix composite armor [J]. International Journal of Structural Integrity, 2017, 8(3): 341–372. DOI: 10.1108/IJSI-07-2016-0026. [17] 余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107. [18] ZHANG Y J, CUI B, DONG H, et al. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor [J]. Ceramics International, 2022, 48(18): 26758–26771. DOI: 10.1016/j.ceramint.2022.05.374. [19] ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132. [20] ZHANG Y J, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests [J]. Ceramics International, 2021, 47(7): 10035–10049. DOI: 10.1016/j.ceramint.2020.12.150. [21] RAHBEK D B, SIMONS J W, JOHNSEN B B, et al. Effect of composite covering on ballistic fracture damage development in ceramic plates [J]. International Journal of Impact Engineering, 2017, 99: 58–68. DOI: 10.1016/j.ijimpeng.2016.09.010. [22] MOTT N F. Fragmentation of shell cases [J]. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042. [23] 王晓东, 余毅磊, 蒋招绣, 等. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究 [J]. 爆炸与冲击, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.WANG X D, YU Y L, JIANG Z X, et al. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities [J]. Explosion and Shock Waves, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181. [24] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5. [25] YADAV S, RAVICHANDRAN G. Penetration resistance of laminated ceramic/polymer structures [J]. International Journal of Impact Engineering, 2003, 28(5): 557–574. DOI: 10.1016/S0734-743X(02)00122-7. [26] BAO J W, WANG Y W, AN R, et al. Investigation of the mechanical and ballistic properties of hybrid carbon/aramid woven laminates [J]. Defence Technology, 2022, 18(10): 1822–1833. DOI: 10.1016/j.dt.2021.09.009. [27] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992. [28] 余毅磊, 王晓东, 任文科, 等. 陶瓷/金属复合靶受12.7 mm穿甲燃烧弹侵彻时弹靶破碎特征 [J]. 兵工学报, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.YU Y L, WANG X D, REN W K, et al. Fragmentation characteristics of 12.7 mm armor-piercing incendiary projectile and ceramic/metal composite target during penetration [J]. Acta Armamentarii, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497. [29] KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates [J]. European Journal of Mechanics-A/Solids, 2013, 42: 35–53. DOI: 10.1016/j.euromechsol.2013.04.002. [30] LIANG L, LIN Y Y, HUANG Y X, et al. Broadband stealth composite metastructure with high penetration protection [J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107069. DOI: 10.1016/j.compositesa.2022.107069. [31] WANG X D, YU Y L, ZHONG K, et al. Effects of impact velocity on the dynamic fragmentation of rigid-brittle projectiles and ceramic composite armors [J]. Latin American Journal of Solids and Structures, 2021, 18(8): e410. DOI: 10.1590/1679-78256701. [32] ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams [J]. International Journal of Impact Engineering, 2016, 93: 153–165. DOI: 10.1016/j.ijimpeng.2016.02.010. [33] 余毅磊, 王晓东, 任文科, 等. UHMWPE背板铺层角度对陶瓷复合靶板抗弹性的影响 [J]. 北京理工大学学报, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.YU Y L, WANG X D, REN W K, et al. Effect of UHMWPE back plate layering angle on the anti-elasticity of ceramic composite target plate [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.