Casing fracture and damage characteristics of an elliptical cross-section warhead under explosive loading
-
摘要: 为研究椭圆截面战斗部爆轰驱动下壳体破片的形成机制和毁伤特性,设计了5种装药质量和壳体质量比相同而短长轴比不同的战斗部,开展了静爆威力试验,获得了椭圆截面战斗部破片径向速度分布规律,并结合细观观测方法分析了爆轰驱动下壳体断裂过程及破片损伤特性,通过测量破片对Q235钢板的侵彻开坑参数,量化了椭圆截面战斗部破片的侵彻毁伤能力。研究结果表明:椭圆截面战斗部破片速度由短轴至长轴方向呈对数趋势增长,相较于圆形截面战斗部存在明显的速度增益,短长轴比为0.40时,增益达到83%;靠近长轴处,由于壳体受到滑移爆轰为主导的驱动作用,壳体内部环向拉应力导致破片内表面出现拉伸裂纹,随着短长轴比增大,破片表面裂纹逐渐消失,而在战斗部短轴处,散心爆轰占据主导地位,壳体主要受到径向压应力作用,并未出现裂纹损伤;受端面稀疏波影响,战斗部轴向最大毁伤威力出现在距离非起爆端1/4处,而在战斗部径向方向,短长轴比为0.40时,短轴毁伤威力达到长轴的1.83倍,且该差异随着短长轴比增大逐渐减小。Abstract: In order to study the mechanism of fragmentation and damage characteristics of elliptical cross-section warhead under internal explosive loading, five types of warheads were designed with the same ratio of charge mass to casing mass but different ratio of minor axis to major axis, and static explosion tests were conducted. The detonation process of the warhead was recorded by high-speed camera, and the destruction capability of the warheads were quantified by measuring the cratering parameters of the witness targets, while the radial velocity distribution of the fragments was obtained by the velocity-measuring targets. The test results show that the radial velocity of the fragments of elliptical cross-section warhead logarithmically increases from the major axis direction to the minor axis direction. There is a significant velocity enhancement compared to circular cross-section warhead, when the ratio of minor to major axis is equal to 0.40, the enhancement reaches to an amazing 83%. The fragments near the major axis are subjected to slip detonation as the dominant driving effect, and the circumferential tensile stress inside the casing leads to tensile cracks on the inner surface of the fragments. At the same time, the tensile cracks disappear gradually as the ratio of minor to major axis increases. In the minor axis direction, the scattered detonation always dominated, and the casing is mainly subjected to radial compressive stresses, thus no tensile crack appears. In addition, due to the influence of rarefaction waves on the end face, the maximum destructive power of the warhead axially occurs at 1/4 of the distance from the non-detonation end. And in the radial direction, the damage power of fragment in the direction of minor axis is significantly greater than that in the major axis direction. Especially when the ratio of minor to major axis is equal to 0.40, the destructive power of the minor axis reaches 1.83 times that of the major axis, but the difference decreases with the increase of minor to major axis ratio.
-
Key words:
- elliptical cross-section warhead /
- detonation drive /
- fragment /
- damage characteristics
-
表 1 战斗部参数
Table 1. Parameters of warhead
编号 a/mm b/mm μ d/mm M/g C/g β E1 35.58 14.23 0.40 3.763 431.3 225.5 0.523 E2 30.34 16.69 0.55 3.956 434.7 228.1 0.525 E3 26.89 18.82 0.70 4.053 435.5 225.3 0.517 E4 24.40 20.74 0.85 4.096 438.2 224.9 0.513 C1 22.50 22.50 1.00 4.108 437.4 224.0 0.512 表 2 战斗部破片方位角与测速度对应关系的处理结果
Table 2. Relationship between azimuthal angle of the fragment impacting the velocity-measuring target
弹体 θ/(°) ① ② ③ ④ ⑤ ⑥ E1 − 3.01 8.69 19.25 30.89/38.33 82.88 E2 − 3.99 − 27.71 46.09/57.09 83.01 E3 4.32 − 21.70 40.07 60.74 83.97 E4 5.24 15.75 26.39 48.43 71.81 83.91 C1 5.63 16.88 28.13 50.63 73.13 84.38 表 3 测速靶测试结果与破片速度
Table 3. Velocity-measuring target test results and fragment velocity
测速靶 E1 E2 E3 E4 C1 Δt/μs v/(m·s−1) Δt/μs v/(m·s−1) Δt/μs v/(m·s−1) Δt/μs v/(m·s−1) Δt/μs v/(m·s−1) ① − − − − 301 1 329 296 1 351 288 1 389 ② 335 1 194 311 1 286 − − 292 1 370 278 1 439 ③ 305 1 311 − − 294 1 361 287 1 394 − − ④ 272 1 471 277 1 444 279 1 434 281 1 423 289 1 384 ⑤ 260 1 538 268 1 493 272 1 471 − − 285 1 404 ⑥ 251 1 594 264 1 515 268 1 493 275 1 465 278 1 441 表 4 破片设计参数
Table 4. Fragment design parameters
弹体 径向刻槽数量 壳体厚度/mm 单个破片设计质量/g E1 44 3.763 0.51 E2 36 3.956 0.61 E3 36 4.053 0.62 E4 32 4.096 0.70 C1 32 4.108 0.71 -
[1] LIU J W, LIU C, ZHANG X F, et al. Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets [J]. International Journal of Impact Engineering, 2023, 173: 104438. DOI: 10.1016/j.ijimpeng.2022.104438. [2] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020. [3] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025. [4] 谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应 [J]. 爆炸与冲击, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.TAN Y S, HUANG F L, PI A G. Structural optimization design and structural response of elliptical-section penetration projectiles [J]. Explosion and Shock Waves, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436. [5] 邓希旻, 田泽, 武海军, 等. 上下非对称结构弹体侵彻金属薄板的特性及薄板破坏形式 [J/OL]. 兵工学报, (2022-11-02) [2023-04-15]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.DENG X M, TIAN Z, WU H J, et al. Penetration characteristics and plate failure modes of asymmetric shaped projectiles penetrating thin metal targets [J/OL]. Acta Armamentarii, (2022-11-02) [2023-04-15]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724. [6] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.TANG T G, LI Q Z, SUN X L, et al. Strain rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05. [7] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107. [8] HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002. [9] WANG X Y, WANG S S, MA F. Experimental study on the expansion of metal cylinders by detonation [J]. International Journal of Impact Engineering, 2018, 114: 147–152. DOI: 10.1016/j.ijimpeng.2017.12.017. [10] BOTVINA L R, LARIONOVA A V. Dynamic fragmentation in steel cylindrical shells [J]. Engineering Fracture Mechanics, 2022, 269: 108482. DOI: 10.1016/j.engfracmech.2022.108482. [11] XU H Y, LI W B, LI W B, et al. Fracture mechanism of a cylindrical shell cut by circumferential detonation collision [J]. Defence Technology, 2021, 17(5): 1650–1659. DOI: 10.1016/j.dt.2020.09.006. [12] GURNEY R W. The initial velocities of fragments from bombs, shells and grenades: report No. 405 [R]. Aberdeen Proving Ground, MD, USA: Ballistic Research Laboratories, 1943. [13] LIAO W JIANG J W, MEN J B, et al. Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge [J]. Defence Technology, 2021, 17(3): 1052–1061. DOI: 10.1016/j.dt.2020.06.024. [14] GAO Y G, ZHANG B, YAN X M, et al. Axial distribution of fragment velocities from cylindrical casing with air parts at two ends [J]. International Journal of Impact Engineering, 2020, 140: 103535. DOI: 10.1016/j.ijimpeng.2020.103535. [15] WANG M F, LU F Y, LI X Y, et al. A formula for calculating the velocities of fragments from velocity enhanced warhead [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 232–237. DOI: 10.1002/prep.201200025. [16] AN X Y, DONG Y X, LIU J Y, et al. Fragment velocity characteristics of warheads with a hollow core under asymmetrical initiation [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(8): 1049–1058. DOI: 10.1002/prep.201800382. [17] GUO Z W, HUANG G Y, ZHU W, et al. Fragment velocity distribution of D-shaped casing with multiple fragment layers [J]. International Journal of Impact Engineering, 2019, 131: 85–93. DOI: 10.1016/j.ijimpeng.2019.04.027. [18] GUO Z W, HUANG G Y, LIU H, et al. Fragment velocity distribution of the bottom part of d-shaped casings under eccentric initiation [J]. International Journal of Impact Engineering, 2020, 144: 103649. DOI: 10.1016/j.ijimpeng.2020.103649. [19] GUO Z W, HUANG G Y, LIU H, et al. Effects of shell thickness on the fragment velocity distribution of D-shaped casing filled with explosive [J]. Journal of Physics: Conference Series, 2021, 1721(1): 012018. DOI: 10.1088/1742-6596/1721/1/012018. [20] LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14. DOI: 10.1177/1687814016687966. [21] 李元, 赵倩, 熊诗辉, 等. 一种异面棱柱战斗部威力特性的数值模拟 [J]. 含能材料, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143.LI Y, ZHAO Q, XIONG S H, et al. Numerical modeling on lethality of a faceted prismatic warhead [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143. [22] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011. [23] 武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验 [J]. 火炸药学报, 2016, 39(3): 89–94. DOI: 10.14077/j.issn.1007-7812.2016.03.018.WU J B, GOU R J, ZHENG J J, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead [J]. Chinese Journal of Explosives and Propellants, 2016, 39(3): 89–94. DOI: 10.14077/j.issn.1007-7812.2016.03.018. [24] 杨祥, 武海军, 皮爱国, 等. 椭圆截面杀伤战斗部破片初速沿周向分布规律 [J]. 北京理工大学学报, 2018, 38(S2): 178–183. DOI: 10.15918/j.tbit1001-0645.2018.s2.040.YANG X, WU H J, PI A G, et al. Fragment velocity distribution of elliptical cross-section killing warhead along circumference [J]. Transactions of Beijing Institute of Technology, 2018, 38(S2): 178–183. DOI: 10.15918/j.tbit1001-0645.2018.s2.040. [25] 邓宇轩, 张先锋, 冯可华, 等. 椭圆截面战斗部爆炸驱动破片作用过程的数值模拟 [J]. 高压物理学报, 2022, 36(2): 025104. DOI: 10.11858/gywlxb.20210856.DENG Y X, ZHANG X F, FENG K H, et al. Numerical simulation of fragmentation process driven by explosion in elliptical cross-section warhead [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. DOI: 10.11858/gywlxb.20210856. [26] 姜斌, 沈波, 薛再清, 等. 椭圆形截面杀伤战斗部破片初速分布特性研究 [J]. 兵器装备工程学报, 2022, 43(3): 149–155. DOI: 10.11809/bqzbgcxb2022.03.023.JIANG B, SHEN B, XUE Z Q, et al. Study on distribution characteristics of initial velocity of elliptic killing warhead fragment [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 149–155. DOI: 10.11809/bqzbgcxb2022.03.023. [27] DENG X M, WU H J, YANG X, et al. Preformed fragment velocity distribution of elliptical cross-section projectile [J]. Latin American Journal of Solids and Structures, 2022, 19(1): e423. DOI: 10.1590/1679-78256835. [28] 戴湘晖, 王可慧, 周刚, 等. 椭圆截面侵彻弹体爆炸特性实验研究 [J]. 爆炸与冲击, 2023, 43(5): 053302. DOI: 10.11883/bzycj-2022-0079.DAI X H, WANG K H, ZHOU G, et al. Experimental study on explosion characteristics for elliptical cross-section penetrator [J]. Explosion and Shock Waves, 2023, 43(5): 053302. DOI: 10.11883/bzycj-2022-0079. [29] 邢恩峰. 中大口径炮弹增大轴向毁伤效能的研究 [D]. 南京: 南京理工大学, 2007: 46–49.XING E F. Research on strengthening axial damage effectiveness of large middle caliber ammunition [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2007: 46–49. [30] HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. DOI: 10.1016/j.ijimpeng.2014.08.007.