Experimental study on oblique water-entry of projectile constrained by ice hole
-
摘要: 基于高速摄影技术,开展了冰孔约束条件下的弹丸倾斜入水实验;通过对比分析无冰环境与冰孔约束条件下的弹丸入水运动过程,并将入水运动过程分为空泡扩张、空泡闭合以及空泡溃灭三个阶段进行了研究,得到了冰孔约束条件下弹丸入水的空泡演化特性;通过对比同一直径冰孔约束条件不同入水初速下弹丸的空泡演化过程及速度变化规律,总结得出了入水初速对于冰孔约束条件下弹丸空泡演化特性以及入水运动特性的影响规律。研究结果表明:空泡扩张阶段,冰孔约束条件下产生的喷溅较为分散,弹丸背水面产生部分隆起;此外,冰孔约束条件下的空泡扩张受到阻碍,空泡最大直径减小。空泡闭合阶段,冰孔约束条件下的空泡闭合时间提前,并且撞击冰板的反射流冲击空泡侧壁使空泡发生局部冲击溃灭。空泡溃灭阶段,冰孔约束条件下的溃灭尾迹由局部冲击溃灭、脱落溃灭和正常溃灭组成;空泡溃灭产生的尾迹旋涡较小。随着入水初速的提高,空泡的长度和最大直径明显增大,局部冲击溃灭的宽度增加;冰孔约束条件会使得弹丸在空泡扩张阶段的速度衰减幅度增大,空泡的闭合时间提前,开始溃灭的时刻延后。Abstract: Based on high-speed photography technology, an experiment study on water-entry of oblique projectile constrained by ice hole was conducted. Digital image processing technology was employed to extract the experimental data. The water-entry process of oblique projectile was analyzed under both ice-free and ice hole constraint environment, and the water-entry process is divided into three stages: cavity expansion stage, cavity closure stage and cavity collapse stage. Additionally, a series water-entry experiments were also conducted with different initial velocities of projectiles under the same ice hole constraint, allowing for the establishment of a relationship between initial velocity and ice hole constraint. Results show that during the cavity expansion stage, the free surface under the ice-hole constraint does not form a bulge, and the splashing on the water-away side of the projectile is suppressed by the ice hole and is more dispersed. The ice-hole constraint leads to the obstruction of cavity expansion and the appearance of bending on the left side of the cavity near the free surface, the maximum diameter of cavity decreases. In the cavity closure stage, the closure time of the cavity is advanced under the constraint of the ice hole. The reflected flow impacts the right side of cavity wall, which causes the pinch-off and local collapse of the cavity. During the cavity collapse stage, under the constraint of ice hole, the wake of cavity collapse consists of local impact collapse, pinch-off cavity collapse and normal cavity collapse, and the wake vortex generated by the collapse is small. As the initial velocity increases, the length and maximum diameter of the cavity significantly increase, and the width of local impact collapse also increases. Furthermore, the ice hole constraint makes the projectile velocity decay faster during the cavity expansion stage, advances the closure time of the cavity, and delays the collapse time of the cavity.
-
[1] VON KARMAN T. The impact on seaplane floats during landing: NACA-TN-321 [R]. National Advisory Committee for Aeronatics, 1929: 309-313. [2] FOROUZANI H, SARANJAM B, KAMALI R. A study on the motion of high speed supercavitating projectiles [J]. Journal of Applied Fluid Mechanics, 2018, 11(6): 1727–1738. DOI: 10.29252/jafm.11.06.28807. [3] ERFANIAN M R, ANBARSOOZ M, RAHIMI N, et al. Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem [J]. Ocean Engineering, 2015, 104: 397–404. DOI: 10.1016/j.oceaneng.2015.05.024. [4] AKBARI M A, MOHAMMADI J, FEREIDOONI J. Stability of oblique water entry of cylindrical projectiles [J]. Journal of Applied Fluid Mechanics, 2021, 14(1): 301–314. DOI: 10.47176/jafm.14.01.31682. [5] AKBARI M A, MOHAMMADI J, FEREIDOONI J. A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 2. DOI: 10.1007/s40430-020-02727-2. [6] SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry [J]. Journal of Fluids Engineering, 2000, 122(4): 806–810. DOI: 10.1115/1.1310575. [7] 高英杰, 孙铁志, 张桂勇, 等. 回转体高速倾斜入水的流场特性及结构响应 [J]. 爆炸与冲击, 2020, 40(12): 123301. DOI: 10.11883/bzycj-2020-0014.GAO Y J, SUN T Z, ZHANG G Y, et al. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body [J]. Explosion and Shock Waves, 2020, 40(12): 123301. DOI: 10.11883/bzycj-2020-0014. [8] LU L, WANG C, LI Q, et al. Numerical investigation of water-entry characteristics of high-speed parallel projectiles [J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13(5): 450–465. DOI: 10.1016/j.ijnaoe.2021.05.003. [9] LU L, GAO C S, QI X B, et al. Numerical study on the water-entry characteristics of asynchronous parallel projectiles at an oblique impact angle [J]. Ocean Engineering, 2023, 271: 113697. DOI: 10.1016/j.oceaneng.2023.113697. [10] BERGSMA J M, BOUHUYS C W, SCHAAP T, et al. On the measurement of submersion ice resistance of ships, using artificial ice [C]// Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan: ISOPE, 2014. [11] ZONG Z, YANG B Y, SUN Z, et al. Experimental study of ship resistance in artificial ice floes [J]. Cold Regions Science and Technology, 2020, 176: 103102. DOI: 10.1016/j.coldregions.2020.103102. [12] 张军, 蔡晓伟, 宣建明, 等. 弹体穿越冰水混合物流动过程的数值模拟 [J]. 弹道学报, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008.ZHANG J, CAI X W, XUAN J M, et al. Numerical simulation of flow filed of projectile passing through ice water mixture [J]. Journal of Ballistics, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008. [13] YOU C, SUN T Z, ZHANG G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder [J]. Ocean Engineering, 2022, 245: 110443. DOI: 10.1016/j.oceaneng.2021.110443. [14] 张健宇. 航行体冰孔约束出水空泡演化及载荷特性研究 [D]. 大连: 大连理工大学, 2021.ZHANG J Y. Study on cavity evolution and load characteristics of water exit of underwater vehicle constrained by ice environment [D]. Dalian: Dalian University of Technology, 2021. [15] 蔡晓伟, 宣建明, 王宝寿, 等. 细长体穿越冰-水混合物的出水流场数值模拟 [J]. 兵工学报, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.CAI X W, XUAN J M, WANG B S, et al. Numerical simulation of thin body passing through the ice-water mixture flow field [J]. Acta Armamentarii, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012. [16] WANG H, LUO Y C, CHEN Z H, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity [J]. Ocean Engineering, 2022, 256: 111464. DOI: 10.1016/j.oceaneng.2022.111464. [17] LOGVINOVICH G V. Hydrodynamics of free-boundary flows [R]. Jersualem: IPST Press, 1972. -
推荐阅读
含初始损伤饱水花岗岩的冲击破坏规律
褚怀保 等, 爆炸与冲击, 2025
弹体高速侵彻花岗岩靶体的结构响应特性
韩明海 等, 爆炸与冲击, 2025
冲击荷载下含铜矿岩能量耗散的数值模拟
左庭 等, 爆炸与冲击, 2025
爆炸荷载作用下uhpc板的弯曲损伤评估
苏琼 等, 爆炸与冲击, 2023
超高速撞击下球形弹丸破碎特性仿真研究
盖芳芳 等, 广东石油化工学院学报, 2022
硬球颗粒-弹塑性聚氨酯平面碰撞特性研究
赵啦啦 等, 振动、测试与诊断, 2025
刚性弹体侵彻混凝土和花岗岩数值模拟研究
刘兵 等, 湘潭大学学报(自然科学版), 2024
Antimicrobial peptides towards clinical application-a long history to be concluded
Cresti, Laura et al., INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024
Transient rock breaking characteristics by successive impact of shield disc cutters under confining pressure conditions
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Mechanical response behavior, constitutive modeling and microstructural evolution of a 7003-t6 al alloy rolled plate under high-speed impact loading
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025



下载: